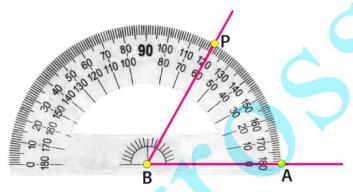


Exercise 14 Page No: 516

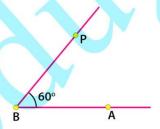
Question 1: Using a protector, draw each of the following angles.

(i) 60° (ii) 130° (iii) 300° (iv) 430°


Solution:

(i)

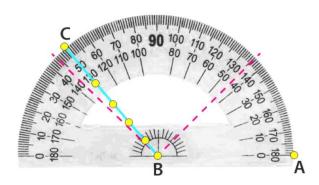
Step 1: Draw a line AB.


Step 2: Place the baseline of the protractor along BA and make sure centre of the protractor lie at point B.

Step 3: Find 60° on the scale of the protractor and mark a small dot at the edge and named as P as shown below:

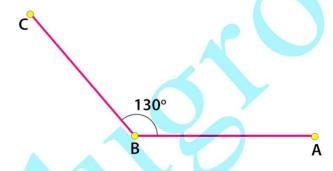
Step 4: Join P to B with a ruler to form the second arm, BP, of the angle.

Mark the angle with a small arc as shown below:


(ii) 1300

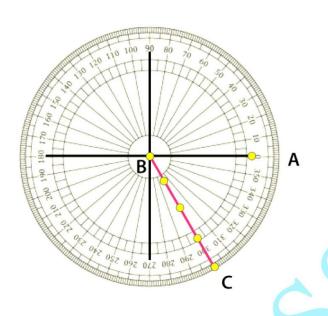
Step 1: Draw a line AB.

Step 2: Place the baseline of the protractor along BA and make sure centre of the protractor lie at point B.


Step 3: Find 130° on the scale of the protractor and mark a small dot at the edge and named as C as shown below:

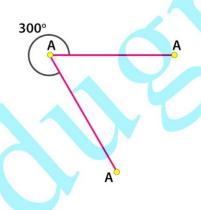
Step 4: Join C to B with a ruler to form the second arm, BC, of the angle.

Mark the angle with a small arc as shown below:


(iii) 300°

Step 1: Draw a line AB.

Step 2: Place the baseline of the protractor along BA and make sure centre of the protractor lie at point B.


Step 3: Find 300^{0} on the scale of the protractor and mark a small dot at the edge and named as C as shown below:

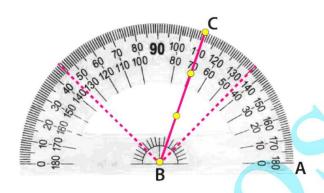
Step 4: Join C to B with a ruler to form the second arm, BC, of the angle.

Mark the angle with a small arc as shown below:

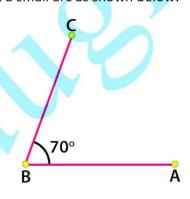
(iv) 430°

We know, adding or subtracting 360^0 from a particular angle does not changes its position. Therefore, given angle can also be written as:

$$430^{0} - 360^{0} = 70^{0}$$


Now, we have to draw an angle for 70°

Step 1: Draw a line AB.


Step 2: Place the baseline of the protractor along BA and make sure centre of the protractor lie at point B

Step 3: Find 430° on the scale of the protractor and mark a small dot at the edge and named as C as shown below:

Step 4: Join C to B with a ruler to form the second arm, BC, of the angle.

Mark the angle with a small arc as shown below:

Question 2: Express each of the following angles in radians.

(i) 36° (ii) 120° (iii) 225° (iv) 330°

(v) 400° (vi) 7° 30′ (vii) -270° (viii) -(22° 30′)

Solution:

We know, Angle in radians = Angle in degrees $x \pi/180^{\circ}$

(i) 36°

Angle in radians = $36^{\circ} x \pi / 180^{\circ}$

 $=\pi/5$

(ii) 120°

Angle in radians = $120^{\circ} \text{ x} \pi/180^{\circ}$

 $= 2\pi/3$

(iii) 225⁰

Angle in radians = $225^{\circ} \times \pi/180^{\circ}$

 $= 5\pi/4$

(iv) 330°

Angle in radians = $330^{\circ} x \pi / 180^{\circ}$

 $= 11\pi/6$

(v) 400°

Angle in radians = $400^{\circ} \times \pi/180^{\circ}$

 $= 20\pi/9$

(vi) 7º 30'

Convert 30' into degrees = (angle in minutes)/60 = (30/60) degrees = 0.5 degrees

Total angle = (7 + 0.5) degrees = 7.5 degrees or 7.5°

Angle in radians = $7.5^{\circ} \times \pi/180^{\circ}$

 $= \pi/24$

(vii) -270°

Angle in radians = $-270^{\circ} \text{ x } \pi/180^{\circ}$

 $= -3\pi/2$

(viii) -(22° 30')

Convert 30' into degrees = (angle in minutes)/60 = (30/60) degrees = 0.5 degrees

Total angle = (22 + 0.5) degrees = 22.5 degrees or 22.5°

Angle in radians = -22.5° x $\pi/180^{\circ}$

 $= -\pi/8$

Question 3: Express each of the following angles in degrees.

- (i) $\left(\frac{5\pi}{12}\right)^c$
- (ii) $-\left(\frac{18\pi}{5}\right)^c$
- (iii) $\left(\frac{5}{6}\right)^c$
- (iv) (-4)c

Solution:

We know that.

Angle in degrees = Angle in radians $\times \frac{180}{\pi}$

- (i) Angle in degrees = $5\pi/12 \times 180/\pi = 75$
- (ii) Angle in degrees = $-18\pi/5 \times 180/\pi = -648$
- (iii) Angle in degrees = $5/6 \times 180/\pi = 47.7272^0$

Write Angle in degrees, minutes and second:

We know,

The angle in minutes = Decimal of angle in radian x 60'

The angle in seconds = Decimal of angle in minutes x 60"

Therefore, $0.7272^0 = 0.7272 \times 60' = 43.632'$

Angle in seconds = 0.632 x 60" = 37.92" or 38"

Final angle = 47⁰ 43' 38"

(iv) Angle in degrees = $-4 \times 180/\pi = -229.0909^{\circ}$

Write Angle in minutes:

We know,

The angle in minutes = Decimal of angle in radian x 60'

The angle in seconds = Decimal of angle in minutes x 60"

Therefore, $0.0909^0 = 0.0909 \times 60' = 5.4545'$

Angle in seconds = $0.4545 \times 60'' = 27.27''$

Final angle = $-(229^{\circ} 5' 27'')$

Question 4: The angles of a triangle are in AP, and the greatest angle is double the least. Find all the angles in degrees and radians.

Solution: Let a - d, a, a + d be the three angles of the triangle that form AP.

Since greatest angle is double the least. (given)

So,
$$a + d = 2(a - d)$$

or $a + d = 2a - 2d$

or
$$a = 3d(1)$$

Again, by angle sum property, we know Sum of all the angles = 180 degrees So, $(a - d) + a + (a + d) = <math>180^{0}$ or $3a = 180^{0}$ or $a = 60^{0}$ (2)

From (1) and (2), we get

$$3d = 60^{0}$$
 or $d = 20^{0}$

Now, the angles are,

$$a - d = 60^{0} - 20^{0} = 40^{0}$$

 $a = 60^{0}$
 $a + d = 60^{0} + 20^{0} = 80^{0}$.

Therefore the required angles are 40° , 60° and 80° .

Question 5: The difference between the two acute angles of a right triangle is $(\pi/5)^{\circ}$. Find these angles in radians and degrees.

Solution:

Angle in degree = $\pi/5 \times 180/\pi = 36^{\circ}$

Let x and y are two acute angles of a right triangle.

So,
$$x - y = 36^{\circ}$$
(1)

Also we know,
$$x + y = 90^{\circ}$$
(2)

Solving (1) and (2), we get

Form (2),
$$63^{\circ} + y = 90^{\circ}$$

or
$$y = 27^{\circ}$$

Therefore, two acute angles are 63° and 27°.

Represent angle into radian:

We know, Angle in radians = Angle in degrees $x \pi/180^{\circ}$

Angle in radians = $63^{\circ} \times \pi/180^{\circ}$

 $= 7\pi/20$

And Angle in radians = $27^{\circ} x \pi/180^{\circ}$

 $= 3\pi/20$

Question 6: Find the radius of a circle in which a central angle of 45° intercepts an arc of length 33 cm. (Take π = 22/7)

Solution:

We know,

Central angle (θ) = (length arc)/radius(1)

Convert angle in radian:

Angle in radians = Angle in degrees $x \pi/180^{\circ} = 45^{\circ} x \pi/180^{\circ} = \pi/4$

From (1),

Radius = (length arc)/Central angle

 $= 33/(\pi/4)$

= 132 x 7/22 = 42

Therefore radius is 42 cm.