

PAGE NO: 282

EXERCISE 25A

1.

- i. A coin is tossed. What are all possible outcomes?
- ii. Two coins are tossed simultaneously. What are all possible outcomes?
- iii. A die is thrown. What are all possible outcomes?
- iv. From a well-shuffled deck of 52 cards, one card is drawn at random. What is the number of all possible outcomes?

Solution: We know that the coin has two sides head (H) and tail (T) So the possible outcomes are X^m . (where x is the number of outcomes when a coin is tossed and m is number of coins)

- i. $\therefore 2^1 = 2$ i.e. head and tail
- : The possible outcomes are H and T.
 - ii. When there are 2 coins $\therefore 2^2 = 4$ i.e. head and tail
- : The possible outcomes are HH, HT, TH, TT.
 - iii. We know that the die has 6 faces So, they are 1, 2, and 3,4,5,6
- \therefore The possible outcomes are 1, 2, 3,4,5,6.
 - iv. We know that the deck of cards has a total of 52 cards So, they are 52cards
- ∴ The possible outcomes are 52cards.

2. In a single throw of coin, what is the probability of getting a tail?

Solution: We know that the coin has two sides head (H) and tail (T) So the possible outcomes are X^m . (where x is the number of outcomes when a coin is tossed and m is number of coins)

: The possible outcomes are H and T.

Total possible outcomes =2

 \therefore Chances of getting a tail = 1(since there is a single coin)

By using the formula,

Probability p () = number of favorable outcomes/ total number of outcomes

- : Probability of getting a tail p (T) = chances/total number of outcomes = $\frac{1}{2}$
 - 3. In a single throw of two coins, find the probability of getting (i) both tails, (ii) at least 1 tail, (iii) at the most 1 tail.

Solution: We know that the coin has two sides head (H) and tail (T) So the possible outcomes are X^m . (where x is the number of outcomes when a coin is tossed and m is number of coins)

- i. When there are 2 coins
- \therefore 2²= 4 i.e. head and tail
- ∴ The possible outcomes are HH, HT, TH, TT.

Total possible outcomes =4

 \therefore Chances of getting a 2 tails = 1, i.e. TT

By using the formula,

Probability p () = number of favorable outcomes/ total number of outcomes

- \therefore Probability of getting a tail p (bothT) = number of two tails occurred/total number of outcomes = $\frac{1}{4}$
 - ii. When there are 2 coins
- \therefore 2²= 4 i.e. head and tail
- : The possible outcomes are HH, HT, TH, TT.

Total possible outcomes =4

: Chances of getting at least 1 tail = 3, i.e. HT, TH, TT

By using the formula,

Probability p () = number of favorable outcomes/ total number of outcomes

- \therefore Probability of getting a tail p (atleast 1T) = number of times 1 tail occurred/total number of outcomes = 3/4
 - iii. When there are 2 coins
- \therefore 2²= 4 i.e. head and tail
- : The possible outcomes are HH, HT, TH, TT.

Total possible outcomes =4

: Chances of getting atmost 1 tail = 3, i.e. HT, TH, TT

By using the formula,

Probability p () = number of favorable outcomes/ total number of outcomes

 \therefore Probability of getting a tail p (atmost 1T) = number of times 1 tail occurred/total number of outcomes = 3/4

4. A bag contains 4 white and 5 blue balls. They are mixed thoroughly and one ball is drawn at random. What is the probability of getting (i) a white ball? (ii) A blue ball?

Solution:

i. We know that the bag containing the total balls = 4white + 5blue = 9balls

White balls = 4

By using the formula,

Probability p () = number of favorable outcomes/ total number of outcomes

- : Probability of getting a white ball p (W) = number of white balls/total number of balls =4/9
- ii. We know that the bag containing the total balls = 4white + 5blue = 9balls Blue balls = 5

By using the formula,

Probability p () = number of favorable outcomes/ total number of outcomes

- ∴ Probability of getting a blue ball p (B) = number of blue balls/total number of balls =5/9
 - 5. A bag contains 5 white, 6 red and 4 green balls. One ball is drawn at random. What is the probability that the ball drawn is (i) green? (ii) White? (iii) Non-red?

Solution:

i. We know that the bag containing the total balls = 5white+6red+4green = 15balls

Green balls = 4

By using the formula,

Probability p () = number of favorable outcomes/ total number of outcomes

- \therefore Probability of getting a green ball p (G) = number of green balls/total number of balls = 4/15
 - ii. We know that the bag containing the total balls = 5white +6red+4green = 15balls

White balls = 5

By using the formula,

Probability p () = number of favorable outcomes/ total number of outcomes

 \therefore Probability of getting a white ball p (W) = number of white balls/total number of balls = 5/15=1/3

iii. We know that the bag containing the total balls = 4white +6red+4green = 15balls

Number of outcomes (excluding red) = 5white+4green=9balls

By using the formula,

Probability p () = number of favorable outcomes/ total number of outcomes

 \therefore Probability of getting a green ball p (G) = number of white balls/total number of balls = 9/15=3/5

6. In a lottery, there are 10 prizes and 20 blanks. A ticket is chosen at random. What is the probability of getting a prize?

Solution: we know that the total number of lottery tickets = 30

Number of lottery tickets having prize = 10

By using the formula,

Probability p () = number of favorable outcomes/ total number of outcomes

: Probability of getting a prized ticket p(P) = number of prized tickets/total number of lottery tickets = 10/30 = 1/3

EXERCISE 25B

PAGE NO: 283

OBJECTIVE OUESTIONS

Select the correct answer in each of the following:

- 1. In a spinning wheel, there are 3 white and 5 green sectors. It is spinned. What is the probability of getting a green sector?
 - a) 5/3
 - b) 5/8
 - c) 1/5
 - d) 3/8

Solution: we know that the,

Total number of sectors= 3white+5green =8sectors

By using the formula,

Probability p () = number of favorable outcomes/ total number of outcomes

- \therefore Probability of getting a green sector p (G) = number of green sectors/total number of sectors = 5/8
 - 2. 8 cards are numbered as 1, 2, 3, 4, 5, 6, 7, 8 respectively. They are kept in a box and mixed thoroughly. Once card is chosen at random. What is the probability of getting a number less than 4?
 - a) $\frac{1}{2}$
 - b) $\frac{3}{4}$
 - c) 3/8
 - d) 3/5

Solution: we know that the,

Total number of cards kept in the box = 8

 \therefore number of cards having a number less than 4 on it = 3

By using the formula,

Probability p () = number of favorable outcomes/ total number of outcomes

- : Probability of selecting a card with a number less than 4 on it p(no.of cards less than 4)
- = number of cards having a number less than 4/total number of cards = 3/8
 - 3. Two coins are tossed simultaneously. What is the probability of getting one head and one tail?
 - a) 1/4
 - b) ½
 - c) $\frac{3}{4}$
 - d) 2/3

Solution: We know that the coin has two sides head (H) and tail (T)

So the possible outcomes are X^m . (where x is the number of outcomes when a coin is tossed and m is number of coins)

When there are 2 coins

- \therefore 2²= 4 i.e. head and tail
- : The possible outcomes are HH, HT, TH, TT.

Total possible outcomes =4

: Chances of getting 1 head and 1 tail = 2, i.e. HT, TH

By using the formula,

Probability p () = number of favorable outcomes/ total number of outcomes

- \therefore Probability of getting 1 head and 1tail p (1H 1T) = number of 1head and 1tail/total number of outcomes = $2/4 = \frac{1}{2}$
 - 4. A bag contains 3 white and 2 red balls. One ball is drawn at random. What is the probability that the ball drawn is red?
 - a) $\frac{1}{2}$
 - b) 2/3
 - c) 1/5
 - d) 2/5

Solution: We know that the bag containing the total balls = 3white + 2red = 5balls

Red balls = 2

By using the formula,

Probability p () = number of favorable outcomes/ total number of outcomes

 \therefore Probability of getting a red ball p (R) = number of red balls/total number of balls = 2/5