

Exercise 15A

Page No: 658

Question 1: Find the area of the triangle whose base measures 24 cm and the corresponding height measures 14.5 cm.

Solution:

Given:

Base of triangle = 24 cm

Height = 14.5 cm

Area of a triangle = 1/2 x Base X Height

 $= 1/2 \times 24 \times 14.5$

= 174

Area of a triangle is 174 cm².

Question 2: Find the area of the triangle whose sides are 42 cm, 34 cm and 20 cm in length. Find the height corresponding to the longest side.

Solution:

Let a, b and c be the sides of a triangle.

Apply Heron's Formula to find the area of triangle.

Area =
$$\sqrt{S(S-a)(S-b)(S-c)}$$

Where
$$S = \frac{a+b+c}{2}$$

Here a = 42 cm, b = 34 cm and c = 20 cm

$$S = (42 + 34 + 20)/2 = 48$$

Area = $\sqrt{(48(48-42)(48-34)(48-20))}$

$$= \sqrt{(48 \times 6 \times 14 \times 28)}$$

= 336

Area of triangle is 336 cm².

Clearly,

Length of longest side = 42 cm

Also we know, Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$ $336 = 1/2 \times 42 \times \text{Height}$ $336 = 21 \times \text{Height}$ or Height = 16 The height corresponding to the longest side is 16 cm.

Question 3: Find the area of the triangle whose sides are 18 cm, 24 cm and 30 cm. Also, find the height corresponding to the smallest side.

Solution:

Let a, b and c be the sides of a triangle. Apply Heron's Formula to find the area of triangle.

Area =
$$\sqrt{S(S-a)(S-b)(S-c)}$$

Where S =
$$\frac{a+b+c}{2}$$

Here a = 18 cm, b = 24 cm, c = 30 cm

Now,

$$S = 1/2(18+24+30) = 36$$

Area = $\sqrt{(36(36-18)(36-24)(36-30))}$

$$= \sqrt{(36 \times 18 \times 12 \times 6)}$$

= 216

Area is 216 cm²

From given, Length of smallest side = 18 cm

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$ 216 = $1/2 \times 18 \times \text{height}$

Height = 24

Therefore, the height corresponding to the smallest side is 24 cm.

Question 4: The sides of a triangle are in the ratio 5: 12: 13, and its perimeter is 150 m. Find the area of the triangle.

Solution:

Perimeter of triangle = 150 m (given)

Let the sides of triangle be, a, b and c, On dividing 150 m in the ratio 5:12:13, we get

a = 5x cm

b = 12x cm

c = 13x cm

We know that, Perimeter of a triangle = Sum of all the sides = a + b + c

$$150 = 5x + 12x + 13x$$

$$= 30 x$$

$$x = 5$$

Sides are:

$$a = 5x = 25 \text{ cm}$$

$$b = 12x = 60 \text{ cm}$$

$$c = 13x = 65 cm$$

Now,

Let a, b and c be the sides of a triangle.

Apply Heron's Formula to find the area of triangle.

Area =
$$\sqrt{S(S-a)(S-b)(S-c)}$$

Where
$$S = \frac{a+b+c}{2}$$

$$S = 1/2(25+60+65) = 75$$
 cm

Area =
$$\sqrt{(75(75-25)(75-60)(75-65))}$$

$$= \sqrt{(75 \times 50 \times 15 \times 10)}$$

Area of triangle is 750 cm².

Question 5: The perimeter of a triangular field is 540 m, and its sides are in the ratio 25:17:12. Find the area of the field. Also, find the cost of ploughing the field at ₹40 per 100 m^2.

Solution:

Perimeter of triangle = 540 m

Let the sides of triangle be, a, b and c

On dividing 540 m in the ratio 25:17:12, we get

a = 25x m

b = 17x m

c = 12x m

We know that, Perimeter of a triangle = Sum of all the sides = a + b + c

540 = 25x + 17x + 12x

= 54 x

x = 10

Sides are:

a = 25x = 250 m

b = 17x = 170 m

c = 12x = 120 m

Let a, b and c be the sides of a triangle.

Apply Heron's Formula to find the area of triangle.

Area =
$$\sqrt{S(S-a)(S-b)(S-c)}$$

Where $S = \frac{a+b+c}{2}$

S = 1/2(250+170+120) = 270 m

Area = $\sqrt{(270(270-250)(270-170)(270-120))}$

 $= \sqrt{(270 \times 20 \times 10 \times 150)}$

= 9000

Area of triangle is 9000 m^2.

Now,

The cost of ploughing 100 m² = ₹40

The cost of ploughing 1 m² = ₹ 40/100

Therefore, cost of ploughing 9000 m^2 = 9000 x 40/100 = ₹3600

Question 6: The perimeter of a right triangle is 40 cm and its hypotenuse measures 17 cm. Find the area of the triangle.

Solution:

The perimeter of a right triangle = 40 cm

Hypotenuse measures = 17 cm.

Let x and y are the another sides.

$$40 = 17 + x + y$$

$$x + y = 23$$

or
$$y = 23 - y$$

So, we have 3 sides as x, 23-x and 17.

Apply Pythagoras theorem:

Hypotenuse^2 = Base^2 + Perpendicular^2

$$17^2 = x^2 + (23-x)^2$$

$$289 = x^2 + 529 + x^2 - 46x$$

$$x^2 - 23x + 120 = 0$$

$$(x - 8)(x - 15) = 0$$

$$x = 8 \text{ or } x = 15$$

If
$$x = 8$$
 then $y = 23-8 = 15$
If $x = 15$ then $y = 23-15 = 8$

Now,

Area of triangle =
$$1/2 \times \text{base} \times \text{height}$$

= $1/2 \times 8 \times 15$
= 60

Therefore, Area of triangle is 60 cm^2

Question 7: The difference between the sides at right angle in a right-angled triangle is 7 cm. The area of the triangle is 60 cm². Find its perimeter.

Solution:

Let x cm be the one of the sides, then (x - 7) cm be another side. Area of triangle = 60 cm² (given)

We know, Area of triangle = 1/2(Base x height)

$$60 = 1/2(x(x-7))$$

$$120 = x^2 - 7x$$

or $x^2 - 7x - 120 = 0$ Solving above equation, we have

$$(x - 15)(x + 8) = 0$$

$$x = 15$$
 or $x = -8$

Since length measure cannot be negative, so neglect x = -8

One side = 15 cm

Another Side = x - 7 = 15 - 7 = 8 cm

Apply Pythagoras theorem:

Hypotenuse^2 = Base^2 + Perpendicular^2

Hypotenuse^2 = $\sqrt{(15^2 + 8^2)}$

Hypotenuse = $\sqrt{289}$ = 17

Therefore, perimeter of triangle = Sum of all the sides = (15 + 8 + 17) cm = 40 cm

Question 8: The lengths of the two sides of a right triangle containing the right angle differ by 2 cm. If the area of the triangle is 24 cm², find the perimeter of the triangle.

Solution:

Let x cm be the one of the sides, then (x - 2) cm be another side. Area of triangle = 24 cm² (given)

We know, Area of triangle = 1/2(Base x height)

24 = 1/2(x(x-2))

$$48 = x^2 - 2x$$

or $x^2 - 2x - 48 = 0$

Solving above equation, we have

(x + 6)(x - 8) = 0

x = -6 or x = 8

Since length measure cannot be negative, so neglect x = -6

One side = 8 cm

Another Side = x - 2 = 8 - 2 = 6 cm

Apply Pythagoras theorem:

Hypotenuse^2 = Base^2 + Perpendicular^2

Hypotenuse^2 = $\sqrt{(8^2 + 6^2)}$

Hypotenuse = $\sqrt{100}$ = 10

Therefore, perimeter of triangle = Sum of all the sides = (6 + 8 + 10) cm = 24 cm

Question 9: Each side of an equilateral triangle is 10 cm. Find (i) the area of the triangle and (ii) the height of the triangle.

Solution:

Side of an equilateral triangle = 10 cm

(i) Area of a triangle = $\sqrt{3}/4$ (side)^2 = $\sqrt{3}/4$ x 10 x 10 = 43.3 Area of a triangle is 43.3 cm^2

(ii) Height of the triangle = $\sqrt{3}/2$ (side) = $\sqrt{3}/2 \times 10 = 8.66$ Height of the triangle is 8.66 cm

Question 10: The height of an equilateral triangle is 6 cm. Find its area. [Take v3 = 1.73]

Solution:

Height of an equilateral triangle = 6 cm Let x be a side of triangle.

Height = $\sqrt{3}/2$ (side) = $\sqrt{3}/2$ x

 $6 = \sqrt{3}/2 x$

 $x = 12/\sqrt{3}$

 $x = 12\sqrt{3}/3 = 6.92$ cm

Now,

Area of a triangle = $\sqrt{3}/4$ (side)^2 = $\sqrt{3}/4$ x 6.92 x 6.92 = 20.76 cm^2

Question 11: If the area of an equilateral triangle is 36v3 cm², find its perimeter.

Solution:

Let each side of an equilateral triangle be "a" cm

Area of an equilateral triangle = 36V3 cm² (Given)

Area of an equilateral triangle = $\sqrt{3}/4$ (side)^2

 $36\sqrt{3} = \sqrt{3}/4 \times a^2$

 $a^2 = 144$

or a = 12 cm

Perimeter = $3 \text{ (side)} = 3 \times 12 = 36 \text{ cm}$.

Question 12: If the area of an equilateral triangle is 81v3 cm^2, find its height.

Solution:

Let each side of an equilateral triangle be "a" cm

Area of an equilateral triangle = 81v3 cm² (Given)

Area of an equilateral triangle = $\sqrt{3}/4$ (side)^2

 $81\sqrt{3} = \sqrt{3}/4 \times a^2$

 $a^2 = 324$

or a = 18 cm

Now,

Height of an equilateral triangle = $\sqrt{3}/2$ (side) = $\sqrt{3}/4$ (18) = $9\sqrt{3}$ cm.

Perimeter = $3 \text{ (side)} = 3 \times 12 = 36 \text{ cm}$.

Question 13: The base of a right-angled triangle measures 48 cm and its hypotenuse measures 50 cm. Find the area of the triangle.

Solution:

We are given with a right-angled triangle whose measures are Base = 48 cm

Hypotenuse = 50 cm

Using Pythagoras Theorem:

Hypotenuse² = Base² + Perpendicular² 50² = 48² + Perpendicular²

or Perpendicular^2 = 2500 - 2304

or Perpendicular = 14 cm

Now,

Area of a triangle = $1/2 \times Base \times Height$

- $= 1/2 \times 48 \text{ cm} \times 14 \text{ cm}$
- = 336 cm^2

Question 14: The hypotenuse of a right-angled triangle is 65 cm and its base is 60 cm. Find the length of perpendicular and the area of the triangle.

Solution:

We are given with a right-angled triangle whose measures are Base = 6 m

Hypotenuse = 6.5 m

Using Pythagoras Theorem:

Hypotenuse^2 = Base^2 + Perpendicular^2

(6.5)^2 = (6)^2 + Perpendicular^2

or Perpendicular^2 = 42.25 - 36

or Perpendicular = 2.5 m

Now,

Area of a triangle = 1/2 × Base × Height = 1/2 × 6 m × 2.5 m = 7.5 cm^2

Question 15: Find the area of a right-angled triangle, the radius of whose circumcircle measure 8 cm and the altitude drawn to the hypotenuse measures 6 cm.

Solution:

Radius of circle = 8 cm and Altitude = 6 cm

Since, in a right-angled triangle the hypotenuse is the diameter of circumcircle. (given)

This implies, Hypotenuse = 2(Radius)

 $=2\times8$

= 16

=> Hypotenuse = 16 cm

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$

(Consider hypotenuse as base and the altitude to the hypotenuse as height)

 $= 1/2 \times 16 \times 6$

= 48

=> Area of a triangle is 48 cm^2

Question 16: Find the length of the hypotenuse of an isosceles right-angled triangle whose area is 200 cm 2 . Also, find its perimeter. [Given: $\sqrt{2} = 1.41$]

Solution:

Let two sides of an isosceles right-angled triangle are of measure "a".

Area of triangle = 200 cm². (given)

$$200 = 1/2(a^2)$$

Now,

Hypotenuse = $\sqrt{(a^2+a^2)} = \sqrt{(2a^2)} = \sqrt{2}$

- $= 20 \sqrt{2}$
- $= 20 \times 1.414$
- = 28.28
- => Hypotenuse is 28.28 cm

Perimeter of triangle = Sum of all the sides = 2a + Hypotenuse

- =40 + 28.28
- = 68.28
- => Perimeter of triangle is 68.28 cm.

Question 17: The base of an isosceles triangle measures 80 cm and its area is 360 cm2. Find the perimeter of the triangle.

Solution:

Let two sides of an isosceles triangle are of measure "a".

Base =
$$b = 80 \text{ cm}$$

Area of triangle = 360 cm². (given)

We know, Area of isosceles triangle = $1/4 \times b\sqrt{4a^2 - b^2}$

$$360 = 1/4 \times 80 \times \sqrt{(4a^2 - (80)^2)}$$

$$360 = 20 \times \sqrt{4a^2 - 6400}$$

$$360 = 20 \times 2\sqrt{(a^2 - 1600)}$$

$$9 = \sqrt{(a^2 - 1600)}$$

Squaring both sides

$$81 = a^2 - 1600$$

a = 41

=> a = 41 cm

Perimeter of triangle = Sum of all the sides = 41 + 41 + 80 = 162

Perimeter of triangle is 162 cm.

Now,

Hypotenuse = $\sqrt{(a^2+a^2)} = \sqrt{(2a^2)} = \sqrt{2}$

- $= 20 \sqrt{2}$
- $= 20 \times 1.414$
- = 28.28
- => Hypotenuse is 28.28 cm

Perimeter of triangle = Sum of all the sides = 2a + Hypotenuse

- =40 + 28.28
- = 68.28
- => Perimeter of triangle is 68.28 cm.

Question 17: The base of an isosceles triangle measures 80 cm and its area is 360 cm². Find the perimeter of the triangle.

Solution:

Let two sides of an isosceles triangle are of same measure "a".

Base = b = 80 cm

Area of triangle = 360 cm². (given)

We know, Area of isosceles triangle = $1/4 \times b\sqrt{4a^2 - b^2}$

$$360 = 1/4 \times 80 \times \sqrt{4a^2 - (80)^2}$$

$$360 = 20 \times \sqrt{4a^2 - 6400}$$

$$360 = 20 \times 2\sqrt{(a^2 - 1600)}$$

$$9 = \sqrt{(a^2 - 1600)}$$

Squaring both sides

$$81 = a^2 - 1600$$

a = 41

=> a = 41 cm

Perimeter of triangle = Sum of all the sides = 41 + 41 + 80 = 162

Perimeter of triangle is 162 cm.

Question 18: Each of the equal sides of an isosceles triangle measures 2 cm more than its height, and the base of the triangle measures 12 cm. Find the area of the triangle.

Solution:

Let h be the height, then Each of the equal sides of an isosceles triangle = (h + 2) cm and Base = 12 cm

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$ = $1/2 \times 12 \times \text{h} \dots (1)$

Area of isosceles triangle = $1/4 \times b \times \sqrt{4a^2 - b^2}$

 $= 1/2 \times 12 \times \sqrt{4(h+2)^2 - 144} \dots (2)$

From (1) and (2), we get

 $1/2 \times 12 \times h = 1/2 \times 12 \times \sqrt{(4(h+2)^2 - 144)}$

 $6h = 3\sqrt{4h^2 + 16h + 16-144}$

 $2h = \sqrt{4h^2 + 16h-128}$

 $4h^2 = 4h^2 + 16h - 128$

16h = 128

or h = 8

Height is 8 cm.

Now,

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$

 $= 1/2 \times 12 \text{ cm} \times 8 \text{ cm}$

 $= 1/2 \times 96 \text{ cm}^2$

= 48 cm^2. Answer!!

Question 19: Find the area and perimeter of an isosceles right triangle, each of whose equal sides measures 10 cm. [Given: V2 = 1.41]

Solution:

Equal sides of measure = 10 cm Here, base and perpendicular are equal sides.

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$ = $1/2 \times 10 \times 10$ = 50

From Pythagorean Theorem:

Hypotenuse^2 = Base^2 + Perpendicular^2

= 10^2 + 10^2

= 200

or Hypotenuse = 10 v2 cm = 10 x 1.41 cm = 14.1 cm

Perimeter = Sum of all the sides = 10 + 10 + 14.1 = 34.1

Therefore, Area of required triangle is 50 cm² and perimeter = 34.1 cm

Question 20: In the given figure, \triangle ABC is an equilateral triangle the length of whose side is equal to 10 cm, and \triangle DBC is right-angled at D and BD = 8 cm. Find the area of the shaded region. [Take $\sqrt{3}$ = 1.732.]

Solution:

 ΔABC is an equilateral triangle the length of whose side is equal to 10 cm, and ΔDBC is right-angled at D and BD = 8 cm.

From figure:

Area of shaded region = Area of ABC - Area of DBC(1)

Area of $\triangle ABC$:

Area = v3/4 (side)^2 = v3/4 (10)^2 = 43.30

So area of \triangle ABC is 43.30 cm²

Area of right $\triangle DBC$:

Area = 1/2 x base x height ...(2)

From Pythagorean Theorem: Hypotenuse^2 = Base^2 + Height^2

BC^2 = DB^2 + Height^2 100 - 64 = Height^2 36 = Height^2 or Height = 6 equation (2) => Area = 1/2 x 8 x 6 = 24

So area of $\triangle DBC$ is 24 cm²

Equation (1) implies

Area of shaded region = 43.30 - 24 = 19.30 Therefore, Area of shaded region = 19.3 cm²

Exercise 15B

Page No: 666

Question 1: The perimeter of a rectangular plot of land is 80 m and its breadth is 16 m. Find the length and area of the plot.

Solution:

Perimeter of rectangle = 80 m Let x be the length and 16m breadth.

We know, perimeter = 2 [length + breadth]

75 = 2(x + 16)

75 = (2x + 32)

Or x = 21.5

Thus,

Length of the rectangle is 21.5 meter

Δgain

Area of the rectangular plot = Length X Breadth

 $= (16 \times 21.5)$

= 344

So, Area of the rectangular plot is 344 cm^2

Therefore, length of rectangle is 21.5 m and the area is 344 m^2.

Question 2: The length of a rectangular park is twice its breadth, and its perimeter measures 840 m. Find the area of the park.

Solution:

The length of a rectangular park = 2(its breadth)

Perimeter = 840 m (Given)

Let x be the breadth of a rectangular park then, length of a rectangular park is 2x m.

We know, Perimeter of rectangle = 2(Length + Breadth)

840 = 2(Length + Breadth)

840 = 2(2x + x)

840 = 6x

or x = 140

Breadth = x = 140 m

and Length = $2x = 2 \times 140 = 280 \text{ m}$

Area of a rectangular park = Length x Breadth = $140 \times 280 = 39200 \text{ m}^2$.

Question 3: One side of a rectangle is 12 cm long and its diagonal measures 37 cm. Find the other side and the area of the rectangle.

Solution:

Let ABCD be the rectangle in which AB Let length of rectangle = 12 cm and diagonal= 37 m Let breadth be the other side.

By Pythagoras theorem,

 $(Breadth)^2 = v((37)^2 - (12)^2)$

 $= v(49 \times 25)$

= v(1225)

or breadth = 35 cm

Thus, length = 12 cm and breadth = 35 cm Area of rectangle = $(12 \times 35) = 420$

Hence, the other side is 35 cm and the area of rectangle is 420 cm².

Question 4: The area of a rectangular plot is 462 m^2 and its length is 28 m. Find the perimeter of the plot.

Solution:

Area of a rectangular plot = 462 m² Length of rectangle = 28 m

Let x m be the breadth of the plot

Now,

Area = Length \times Breadth = (28x)

462 = 28x

or x = 16.5

Again,

Perimeter of the plot = 2(length + breadth) = 2(28 + 16.5) = 89

Therefore,
Breadth of plot = 16.5 m
Perimeter of the plot = 89 m

Question 5: A lawn is in the form of a rectangle whose sides are in the ratio 5 : 3. The area of the lawn is 3375 m². Find the cost of fencing the lawn at ₹65 per metre.

Solution:

Cost of fencing lawn = ₹ 65 per metre. Area of lawn = 3375 m^2

Length: Breadth = 5:3

Length = 5x

Breadth = 3x

We know, Area of lawn = Length × Breadth

3375 = 5x(3x)

 $3375 = 15x^2$

 $225 = x^2$

or x = 15 m

Therefore,

Length = $5x = 5 \times 15 = 75 \text{ m}$

Breadth = $3x = 3 \times 15 = 45 \text{ m}$

Now,

Perimeter of lawn = 2(length + breadth)

= 2(75 + 45)

 $= 2 \times 120$

= 240

Perimeter is 240 m

Cost of Fencing = 240 × ₹ 65 per meter = ₹15600. Answer!!

Question 6: A room is 16 m long and 13.5 m broad. Find the cost of covering its floor with 75-m-wide carpet at ₹60 per metre.

Solution:

Cost of covering room floor = ₹60 per metre.

Length of room = 16 m

Breadth of room = 13.5 m

Breadth of carpet = 75 cm = 0.75 m

We know, Area of room = Length × Breadth

 $= 16 \times 13.5$

= 216

=> Area of room is 216 m^2

Length of carpet can be calculated by using below formula:

Length of carpet = (area of room)/(Breadth of carpet)

= 216/0.75

= 288 m

Now,

Cost of covering the floor = 288 m × ₹60 per meter = ₹17280

Question 7: The floor of a rectangular hall is 24 m long and 18 m wide. How many carpets, each of length 2.5 m and breadth 80 cm, will be required to cover the floor of the hall?

Solution:

Length of hall = 24 m Breadth of hall = 18 m Length of carpet = 2.5 mBreadth of carpet = 80 cm = 0.8 m

Area of hall = Length × Breadth

 $= 24 \times 18$

= 432 m^2

And, Area of carpet = Length × Breadth

 $= 2.5 \times 0.8$

 $= 2 m^2$

Number of carpets = (area of hall)/(Area of carpet) = 432/2 = 216

That is, number of carpets are 216.

Question 8: A 36 m-long, 15m-broad verandah is to be paved with stones, each measuring 6 dm by 5 dm. How many stones will be required?

Solution:

Length of verandah = 36 m Breadth of verandah = 15 m

Length of stones = 6 dm = 0.6 m Breadth of stones = 5 dm = 0.5 m

Now,

Area of verandah = Length × Breadth

 $= 36 \times 15$

= 540

Area = 540 m^2

Area of stones = Length × Breadth

 $= 0.6 \times 0.5$

= 0.3

Area of stone = 0.3 m^2

Number of stones = (area of verandah)/(Area of stones) = 540/0.3 = 1800

That is, number of stones required are 1800.

Question 9: The area of a rectangle is 192 cm² and its perimeter is 56 cm. Find the dimensions of the rectangle.

Solution:

The area of a rectangle is 192 cm² and its perimeter is 56 cm. let I cm be the length and b cm be the breadth.

Area of rectangle = Length × Breadth

$$192 = 1 \times b$$

Perimeter of rectangle = 2(length + breadth)

$$56 = 2(1 + b)$$

from (1)

$$56 = 2(192/b + b)$$

$$28 = (192 + b^2)/b$$

$$b^2 - 28b + 192 = 0$$

$$(b-12)(b-16)=0$$

b = 12 cm or b = 16 cm

Choose b = 12cm then l = 16cm

Hence, Length is 16 cm and Breadth is 12 cm.

Question 10: A rectangular park 35 m long 18 m wide is to be covered with grass, leaving 2.5 m uncovered all around it. Find the area to be laid with grass.

Solution:

Given:

Length of the park = 35 m Breadth of the park = 18 m

Area of the park = Length × Breadth

- $= 35 \times 18$
- = 630 m^2

Length of the park with grass = (35 - 5) = 30 m

Breadth of the park with grass = (18 - 5) m = 13 m

Area of park with grass = $(30 \times 13) = 390 \text{ m}^2$

Area of path without grass = Area of the whole park area of park with grass

- = 630 390
- = 240 m^2

Hence, area of the park to be laid with grass = 240 m²

Question 11: A rectangular plot measures 125m by 78m. It has gravel path 3m wide all around on the outside. Find the area of the path and the cost of gravelling it at ₹ 75 per m^2.

Solution:

Given:

Length of the plot = 125 m

Breadth of the plot = 78 m

Area of plot ABCD = Length × Breadth

- $= 125 \times 78$
- = 9750 m^2

Length of the plot including the path= (125 + 3 + 3) m = 131 m Breadth of the plot including the path = (78 + 3 + 3) m = 84 m

Now,

Area of plot PQRS including the path = Length × Breadth

- $= (131 \times 84)$
- = 11004 m^2

Area of path = Area of plot PQRS - Area of plot ABCD

- = 11004 **9**750
- = 1254 m^2

Cost of gravelling = ₹75 per m^2

Cost of gravelling the whole path = ₹ (1254 × 75) = ₹ 94050

Hence, cost of gravelling the path is ₹ 94050.

Question 12: (i) A footpath of uniform width runs all around the inside of a rectangular field 54 m long and 35m wide. If the area of the path is 420 m^2, find the width of the path.

Solution:

Given:

Length of field = 54 m

Breadth of field = 35 m Let x m be the width of the path.

Area of field = Length × Breadth

- $= 54 \times 35$
- = 1890 m^2

Length of field without path = 54 - (x + x) = 54 - 2xBreadth of field without path = 35 - (x + x) = 35 - 2x

Now,

Area of field without path = Length without path × Breadth without path

$$= (54 - 2x)(35 - 2x)$$

- $= 1890 70x 108x + 4x^2$
- $= 4x^2 178x + 1890 \dots (1)$

Area of path = Area of field - Area of field without path

$$420 = 1890 - (1890 - 178x + 4x^2)$$

(Using equation (1))

$$420 = 178x - 4x^2$$

or
$$4x^2 - 178x + 420 = 0$$

or
$$2x^2 - 89x + 210 = 0$$

On solving above equation, we have

$$x = 42 \text{ or } x = 5/2$$

As width of park cannot be more than breadth of field, so width of park is 42 m.

(ii) A carpet is laid on the floor of a room 8m by 5m. There is a border of constant width all around the carpet. If the area of the border is 12 m^2, find its width.

Solution:

Area of border = 12 m^2 Length of room = 8m Breadth of room = 5m Let x be the width of carpet Length of carpet = 8-x-x = (8-2x)m Breadth of carpet = 5-x-x = (5-2x)m

Area of room (carpet + border) = $8 \times 5 = 40 \text{ m}^2$

Area of carpet = (8-2x)(5-2x)= $(40-16x-10x+4x^2)$

 $= (4x^2-26x+40)$

Now,

Area of ground = Area of border + Area of carpet $40 = 12 + 4x^2-26x+40$ $2x^2-13x+6=0$ After solving above equation, we have x = 1/2 or x = 6 (ignore as it is longer than room)

So, Width of border = 0.5m

Question 13: The length and the breadth of a rectangular garden are in the ratio 9: 5. A path 3.5 m wide, running all around inside it has an area of 1911 m². Find the dimensions of the garden.

Solution:

Let the length and breadth of a rectangular garden be 9x and 5x.

Area of field = Length

× Breadth

=9x(5x)

 $= 45 x^2$

Length of field without path = 9x - (3.5 + 3.5) = 9x - 7Breadth of field without path = 5x - (3.5 + 3.5) = 5x - 7

Area of field without path = Length without path x Breadth without path

$$= (9x - 7) \times (5x - 7)$$

$$=45x^2-35x-63x+49$$

$$=45x2 - 98x + 49$$

Now,

Area of path = Area of field - Area of field without path

$$1911 = 45x^2 - (45x^2 - 98x + 49)$$

$$1911 = 98x - 49$$

x = 20

Therefore:

Length of field = $9x = 9 \times 20 = 180 \text{ m}$ Breadth of field = $5x = 5 \times 20 = 100 \text{ m}$

Question 14: A room 4.9 m long and 35 m broad is covered with carpet, leaving an uncovered margin of 25 cm all around the room. If the breadth of the carpet is 80 cm, find its cost at ₹ 80 per meter.

Solution:

Length of room = 4.9 m

Breadth of room = 3.5 m

Margin = 25 cm = 0.25 m

Breadth of carpet = 80 cm = 0.8 m

Cost = ₹80 per meter

Now,

Length to be carpeted = 4.9 m - (0.25 + 0.25) m = 4.4 mBreadth to be carpeted = 3.5 m - (0.25 + 0.25) m = 3 m

Therefore,

Area to be carpeted = Length to be carpeted X Breadth to be carpeted

$$= 4.4 \times 3$$

= 13.2 m^2

Area of carpet = Area to be carpeted = 13.2 m^2

Now,

Lengthof carpet = (area of carpet) / (breadth of carpet) = 13.2/0.8 = 16.5

Length of carpet is 16.5 m

Now,

Cost of 1 m carpet = ₹80

Therefore,

Cost of 16.5 m carpet = ₹80 × 16.5 m = ₹1,320

Question 15: A carpet is laid on the floor of a room 8 m by 5 m. There is a border of constant width all around the carpet. If the area of the border is 12 m^2, find its width.

Solution:

A carpet is laid on the floor of a room 8 m by 5 m. Area of the border = 12 m²

Let the width of the carpet be x meter

Area of floor = Length × Breadth

$$=8\times5$$

$$= 40 \text{ m}^2$$

Length without border = 8 m - (x + x) = (8 - 2x) m

Breadth without border = 5 m - (x + x) m = (5 - 2x) m

Area without border = Length without border × Breadth without border

$$= (8 - 2x) \times (5 - 2x)$$

$$= 40 - 16x - 10x + 4x^2$$

Area of border = Area of floor - Area without border

$$12 = 40 - (40 - 16x - 10x + 4x^2)$$

or
$$4x^2 - 26x + 12 = 0$$

Solving above equation, we have

(x-6)(4x-2)=0

x = 6 or x = 1/2

Since Border cannot be greater than carpet.

Therefore, width of border is 1/2 m.

Question 16: A 80 m by 64 m rectangular lawn has two roads, each 5 m wide, running through its middle, one parallel to its length and the other parallel to its breadth. Find the cost of gravelling the roads at ₹40 per m^2.

Solution:

Length of rectangular lawn = 80 m Breadth = 64 m Width of road = 5 m

Area of horizontal road = $5 \times 80 = 400 \text{ m}^2$

Area of vertical road = $5 \times 64 = 320 \text{ m}^2$

Area of common part to both roads = $5 \times 5 = 25 \text{ m}^2$

Now,

Area of roads to be gravelled = Area of horizontal road + Area of vertical road - Area of common part to both roads

= 400 + 320 - 25

= 695

Therefore, Area of roads to be gravelled is 695 m^2

Cost of gravelling = 695 x ₹ 40 per $m^2 = ₹27800$

Question 17: The dimensions of a room are 14m x 10 m x 6.5 m. There are two doors and 4 windows in the room. Each door measures 2.5 m x 1.2 m and each window measures 1.5 x 1 m. Find the cost of painting the four walls of the room at \leq 35 per m^2.

Solution:

```
Dimensions of wall:
Length = 14 \text{ m}
Breadth = 10 m
Height = 6.5 \text{ m}
Dimensions of windows
Length = 1.5 \text{ m}
Breadth = 1 \text{ m}
And,
Length of doors = 2.5 \text{ m}
Breadth of doors = 1.2 m
Cost = ₹35 per m^2
Now,
Area of four walls = 2(Length of walls \times Height of walls) + 2(Breadth of walls \times Height of walls)
= 2(14 \times 6.5) + 2(10 \times 6.5)
= 182 + 130
= 312
=> Area of four walls is 312 m^2
Area of two doors = 2(Length of doors × Breadth of doors)
= 2(2.5 \times 1.2)
= 6
=> Area of two doors is 6 m^2
Area of four windows = 4(Length of windows × Breadth of windows)
=4(1.5 \times 1)
= 6
=> Area of four windows is 6 m^2
Therefore,
Area to be painted = Area of 4 walls – (Area of 2 doors + Area of 4 windows)
= 312 - (6+6)
= 300
=> Area to be painted is 300 m^2
Cost of painting = 300 m<sup>2</sup> × ₹ 35 per m<sup>2</sup>
=₹10500
```


Question 18: The cost of painting the four walls of a room 12 m long at ₹ 30 per m^2 is ₹ 7560 and the cost of covering the floor with mat at ₹25 per m^2 is ₹ 2700. Find the dimensions of the room.

Solution:

Length of a wall = 12 m Cost per meter = ₹30 Total cost = ₹7560 Cost per meter for floor = ₹25 Total cost for floor = ₹2700 Let h be the height.

Breadth = (area of the floor) / Length = 108/12 = 9m

Area of the floor = (total cost)/ (cost per meter) = $2700/25 = 108 \text{ m}^2$

Again,

Area of walls = (total cost)/ (cost per meter) = $7560/30 = 252 \text{ m}^2$

Now,

Area of 4 walls = $2(\text{Length of walls} \times \text{Height of walls}) + 2(\text{Breadth of walls} \times \text{Height of walls})$

 $252 = 2(12 \times h) + 2(9 \times h)$ 252 = 24h + 18h 252 = 42h h = 6=> Height is 6 m

Therefore dimensions of the room are: 12 m × 9 m × 6 m

Question 19: Find the area and perimeter of a square plot of land whose diagonal is 24 m long. [Take $\sqrt{2} = 1.41$]

Solution:

Diagonal of a square plot = 24 m (given) Let the side of square be 'a' Area of square = $1/2 \times Diagonal^2$ = $1/2 \times 24^2$ = 288 m^2 Area of square = (side)^2 $288 = a^2$ a = $12\sqrt{2} = 12 \times 1$. 41 = 16.92

or a = 16.92 m

Now,

Perimeter of square = $4a = 4 \times 16.92 = 67.68$ Perimeter of square is 67.68m.

Question 20: Find the length of the diagonal of a square of area 128 cm^2. Also find its perimeter. Solution:

Area of a square = 128 cm² (given) Let the side of square be 'a' Area of square = 1/2 × Diagonal² 128 = 1/2 × Diagonal² Diagonal = 16 cm Area of square = (side)² 128 = a²

=> a = 11.31 cmPerimeter of square = $4a = 4 \times 11.31 = 45.24$

Perimeter of square is 45.24 cm.