EXERCISE 11 PAGE: 387 1. Which of the following figures lie on the same base and between the same parallels. In such a case, write the common base and the two parallels. #### **Solution:** - (i) It does not lie on the same base and between the same parallels. - (ii) It does not lie on the same base and between the same parallels. - (iii) The given figure, lies on the same base and between the same parallels. The common base is AB and the two parallels are AB and DE. - (iv) It does not lie on the same base and between the same parallels. - (v) The given figure, lies on the same base and between the same parallels. The common base is BC and the two parallels are BC and AD. - (vi) The given figure lies on the same base and between the same parallels. The common base is CD and the two parallels are CD and BP. - 2. In the adjoining figure, show that ABCD is a parallelogram. Calculate the area of parallelogram ABCD. Construct AM \perp DC and CL \perp AB. Extend the lines DC and AB and join AC. We know that Area of the quadrilateral ABCD = area of triangle ABD + area of triangle DCB From the figure we know that Area of \triangle ABD = Area of \triangle DCB So it can be written as Area of the quadrilateral ABCD = 2 (Area of \triangle ABD) We get Area of \triangle ABD = $\frac{1}{2}$ (area of quadrilateral ABCD)(1) Area of quadrilateral ABCD = area of \triangle ABC + area of \triangle CDA From the figure we know that Area of \triangle ABC = Area of \triangle CDA So it can be written as Area of the quadrilateral ABCD = 2 (Area of \triangle ABC) We get Area of \triangle ABC = $\frac{1}{2}$ (area of quadrilateral ABCD)(2) Using the equations (1) and (2) Area of \triangle ABD = Area of \triangle ABC = $\frac{1}{2}$ BD = $\frac{1}{2}$ CL It can be written as CL = BD In the same way we get DC = AB and AD = BC Hence, ABCD is a parallelogram Area of parallelogram ABCD = base \times height = 5×7 = 5 × / $= 35 \text{ cm}^2$ Therefore, area of parallelogram ABCD is 35 cm². ### 3. In a parallelogram ABCD, it is being given that AB = 10cm and the altitudes corresponding to the sides AB and AD are DL = 6cm and BM = 8cm, respectively. Find AD. ### **Solution:** From the figure we know that Area of the parallelogram $ABCD = base \times height$ So we get $AB \times DL = AD \times BM$ By substituting the values in the above equation $10 \times 6 = AD \times BM$ It is given that BM = 8cm $AD \times BM = 60 \text{ cm}^2$ $AD \times 8 = 60$ By division AD = 60/8 So we get AD = 7.5 cm Therefore, AD = 7.5cm. ## 4. Find the area of a figure formed by joining the midpoints of the adjacent sides of a rhombus with diagonals 12 cm and 16 cm. #### **Solution:** We know that ABCD is a rhombus with P, Q, R and S as the midpoints of AB, BC, CD and DA. AC and BD diagonals are joined. Using the midpoint theorem We know that $PQ = \frac{1}{2} AC$ By substituting the values we get $PQ = \frac{1}{2}(16)$ By division PQ = 8cm In \triangle DAC we know that S and R are the midpoints of AD and DC Using the midpoint theorem $SR = \frac{1}{2}AC$ By substituting the values $SR = \frac{1}{2}(12)$ By division SR = 6cm Consider the rectangle PQRS Area of the rectangle $PQRS = length \times breadth$ So we get Area of the rectangle PQRS = 6×8 By multiplication Area of the rectangle PQRS = 48 cm^2 Therefore, area of the figure is 48 cm². ### 5. Find the area of a trapezium whose parallel sides are 9cm and 6cm respectively and the distance between these sides is 8cm. ### **Solution:** We know that Area of trapezium = $\frac{1}{2}$ (sum of parallel sides × distance between them) By substituting the values Area of trapezium = $\frac{1}{2}$ ((9 + 6) × 8) On further calculation Area of trapezium = $\frac{1}{2}$ (120) So we get Area of trapezium = 60 cm^2 Therefore, area of the trapezium is 60 cm². ### 6. (i) Calculate the area of quad. ABCD, given in Fig. (i). ### (ii) Calculate the area of trap. PQRS, given in Fig. (ii). ### **Solution:** ### (i)Consider △ BCD Using the Pythagoras theorem We can write it as $$DB^2 + BC^2 = DC^2$$ By substituting the values $$DB^2 + 8^2 = 17^2$$ By subtraction $$DB^2 = 17^2 - 8^2$$ $$DB^2 = 289 - 64$$ By subtraction $$DB^2 = 225$$ By taking the square root $$DB = \sqrt{225}$$ So we get $$DB = 15cm$$ We can find Area of \triangle BCD = $\frac{1}{2} \times b \times h$ By substituting the values Area of \triangle BCD = $\frac{1}{2} \times 8 \times 15$ On further calculation Area of \triangle BCD = 60 cm² Consider △ BAD Using the Pythagoras theorem We can write it as $$DA^2 + AB^2 = DB^2$$ By substituting the values $AB^2 + 9^2 = 15^2$ By subtraction $AB^2 = 15^2 - 9^2$ $AB^2 = 225 - 81$ By subtraction $AB^2 = 144$ By taking the square root $AB = \sqrt{144}$ So we get AB = 12cm We can find Area of \triangle DAB = $\frac{1}{2} \times b \times h$ By substituting the values Area of \triangle DAB = $\frac{1}{2} \times 9 \times 12$ On further calculation Area of \triangle DAB = 54 cm² So we get Area of quadrilateral ABCD = area of \triangle DAB + area of \triangle BCD By substituting the values Area of quadrilateral ABCD = 54 + 60 By addition Area of quadrilateral ABCD = 114 cm^2 Therefore, the area of quadrilateral ABCD is 114 cm². ### (ii) From the figure Using the Pythagoras theorem in \triangle RTQ We get $$RT^2 + TQ^2 = RQ^2$$ By substituting the values $RT^2 + 8^2 = 17^2$ On further calculation $RT^2 = 17^2 - 8^2$ So we get $$RT^2 = 289 - 64$$ By subtraction $RT^2 = 225$ By taking square root $RT = \sqrt{225}$ RT = 15cm We can find the area of trapezium Area of trapezium PQRS = $\frac{1}{2}$ (sum of parallel sides × distance between them) So we get Area of trapezium PQRS = $\frac{1}{2}$ ((8 + 16) × 15) On further calculation we get Area of trapezium PQRS = 180 cm^2 Therefore, the area of trapezium PQRS is 180 cm². 7. In the adjoining figure, ABCD is a trapezium in which AB || DC; AB = 7cm; AD = BC = 5cm and the distance between AB and DC is 4cm. Find the length of DC and hence, find the area of trap. ABCD. ### **Solution:** Consider △ ALD Based on the Pythagoras theorem $$AL^2 + DL^2 = AD^2$$ By substituting the values $$4^2 + DL^2 = 5^2$$ So we get $$DL^2 = 5^2 - 4^2$$ $$DL^2 = 25 - 16$$ By subtraction $$DL^2 = 9$$ By taking square root $$DL = \sqrt{9}$$ So we get $$DL = 3$$ cm Consider △ BMC Based on the Pythagoras theorem $$MC^2 + MB^2 = CB^2$$ By substituting the values $$MC^2 + 4^2 = 5^2$$ So we get $$MC^2 = 5^2 - 4^2$$ $$MC^2 = 25 - 16$$ By subtraction $$MC^2 = 9$$ By taking square root $$MC = \sqrt{9}$$ So we get $$MC = 3 cm$$ From the figure we know that LM = AB = 7cm So we know that CD = DL + LM + MC By substituting the values CD = 3 + 7 + 3 By addition CD = 13cm Area of Trapezium ABCD = $\frac{1}{2}$ (sum of parallel sides × distance between them) So we get Area of Trapezium ABCD = $\frac{1}{2}$ × (CD + AB) × AL By substituting the values Area of Trapezium ABCD = $\frac{1}{2} \times (13 + 7) \times 4$ On further calculation Area of Trapezium ABCD = 20×2 By multiplication Area of Trapezium ABCD = 40 cm^2 Therefore, length of DC = 13cm and area of trapezium ABCD = 40 cm². ### 8. BD is one of the diagonals of a quad. ABCD. If AL \perp BD and CM \perp BD, show that Ar (quad. ABCD) = $\frac{1}{2} \times$ BD \times (AL + CM). ### **Solution:** From the figure we know that Area of \triangle ABD = $\frac{1}{2} \times b \times h$ It can be written as Area of \triangle ABD = $\frac{1}{2}$ × BD × AL Area of \triangle CBD = $\frac{1}{2} \times b \times h$ It can be written as Area of \triangle CBD = $\frac{1}{2}$ × BD × CM We know that Area of quadrilateral ABCD = Area of \triangle ABD + Area of \triangle CBD So we get Area of quadrilateral ABCD = $\frac{1}{2} \times BD \times AL + \frac{1}{2} \times BD \times CM$ It can be written as Area of quadrilateral ABCD = $\frac{1}{2}$ × BD (AL + CM) Therefore, it is proved that Area of quadrilateral ABCD = $\frac{1}{2}$ × BD (AL + CM). ### 9. M is the midpoint of the side AB of a parallelogram ABCD. If ar (AMCD) = 24 cm², find ar (\triangle ABC). Solution: Join the diagonal AC From the figure we know that the diagonal AC divides the parallelogram ABCD into two triangles having the same area It can be written as Area of \triangle ADC = Area of \triangle ABC(1) We know that \triangle ADC and parallelogram ABCD are on the same base CD and between the same parallel lines DC and AM. It can be written as Area of \triangle ADC = Area of \triangle ABC = $\frac{1}{2}$ (Area of parallelogram ABCD) From the figure we know that M is the midpoint of AB So we get Area of \triangle AMC = Area of \triangle BMC = $\frac{1}{2}$ (Area of \triangle ABC) = $\frac{1}{2}$ (Area of \triangle ADC) It can be written as Area of AMCD = Area of \triangle ADC + Area of \triangle AMC By substituting the values $24 = \text{Area of } \triangle \text{ ADC} + \frac{1}{2} \text{ (Area of } \triangle \text{ ADC)}$ It can be written as 24 = 3/2 (Area of \triangle ADC) By cross multiplication $24 \times 2 = 3 \times (Area of \triangle ADC)$ On further calculation $48 = 3 \times (Area \text{ of } \triangle ADC)$ So we get Area of \triangle ADC = 48/3 By division Area of \triangle ADC = 16 cm² From equation (1) Area of \triangle ADC = Area of \triangle ABC = 16 cm² Therefore, Area of \triangle ABC = 16 cm². 10. In the adjoining figure, ABCD is a quadrilateral in which diag. BD = 14cm. If AL \perp BD and CM \perp BD such that AL = 8cm and CM = 6cm, find the area of quad. ABCD. ### **Solution:** We know that Area of \triangle BAD = $\frac{1}{2} \times$ BD \times AL By substituting the values in the above equation Area of \triangle BAD = $\frac{1}{2} \times$ 14 \times 8 By multiplication Area of \triangle BAD = 56 cm² We know that Area of \triangle CBD = $\frac{1}{2}$ × BD × CM By substituting the values in the above equation Area of \triangle CBD = $\frac{1}{2}$ × 14 × 6 By multiplication Area of \triangle CBD = 42 cm² So we get Area of quadrilateral ABCD = Area of \triangle ABD + Area of \triangle CBD By substituting the values Area of quadrilateral ABCD = 56 + 42By addition Area of quadrilateral ABCD = 98 cm^2 Therefore, area of quadrilateral ABCD is 98 cm². # 11. If P and Q are any two points lying respectively on the sides DC and AD of a parallelogram ABCD then show that ar $(\triangle APB) = ar (\triangle BQC)$. Solution: From the figure we know that \triangle APB and parallelogram ABCD lie on the same base AB and between the same parallels AB and DC So we get Area of \triangle APB = $\frac{1}{2}$ (Area of parallelogram ABCD)(1) In the same way \triangle BQC and parallelogram ABCD lie on the same base BC and between the same parallels BC and AD So we get Area of \triangle BQC = $\frac{1}{2}$ (Area of parallelogram ABCD)(1) Using the equations (1) and (2) We get Area of \triangle APB = Area of \triangle BQC Therefore, it is proved that Area of \triangle APB = Area of \triangle BQC. ### 12. In the adjoining figure, MNPQ and ABPQ are parallelograms and T is any point on the side BP. Prove that - (i) ar(MNPQ) = ar(ABPQ) - (ii) ar $(\triangle ATQ) = \frac{1}{2}$ ar (MNPQ). #### **Solution:** (i)From the figure we know that the parallelograms MNPQ and ABPQ are on the same base PQ and lie between the same parallels PQ and MB. So we get Area of parallelogram MNPQ = Area of parallelogram ABPQ Therefore, it is proved that ar (MNPQ) = ar (ABPQ). (ii) From the figure we know that \triangle ATQ and parallelogram ABPQ lie on the same base AQ and between the same parallels AQ and BP. So we get Area of \triangle ATQ = $\frac{1}{2}$ (Area of parallelogram ABPQ) It can be written as Area of \triangle ATQ = $\frac{1}{2}$ (Area of parallelogram MNPQ) Therefore, it is proved that ar $(\triangle ATQ) = \frac{1}{2}$ ar (MNPQ). 13. In the adjoining figure, ABCD is a trapezium in which AB || DC and its diagonals AC and BD intersect at O. Prove that ar $(\triangle AOD) = ar (\triangle BOC)$. From the figure we know that \triangle AOD and \triangle DCB lie on the same base CD and between two parallel lines DC and AB. We know that the triangles lying on the same base and parallels have equal area. Consider \triangle CDA and \triangle CDB It can be written as Area of \triangle CDA = Area of \triangle CDB So we get Area of \triangle AOD = Area of \triangle ADC – Area of \triangle OCD In the same way Area of \triangle BOC = Area of \triangle CDB – Area of \triangle OCD So we get Area of \triangle BOC = Area of \triangle ADC – Area of \triangle OCD Area of \triangle AOD = Area of \triangle BOC Therefore, it is proved that ar $(\triangle AOD) = ar (\triangle BOC)$. 14. In the adjoining figure, DE || BC. Prove that (i) ar $(\triangle ACD) = ar (\triangle ABE)$ (ii) ar (\triangle OCE) = ar (\triangle OBD). ### **Solution:** (i)From the figure we know that \triangle DBE and \triangle DCE lie on the same base DE between the parallel lines BC and DE. So we get Area of \triangle DBE = Area of \triangle DCE(1) By adding \triangle ADE both sides Area of \triangle DBE + Area of \triangle ADE = Area of \triangle DCE + Area of \triangle ADE We get Area of \triangle ABE = Area of \triangle ACD Therefore, it is proved that ar $(\triangle ACD) = ar (\triangle ABE)$. (ii) Subtracting △ ODE from equation (1) We get Area of \triangle DBE – Area of \triangle ODE = Area of \triangle DCE - Area of \triangle ODE We get Area of \triangle OBD = Area of \triangle OCE Therefore, it is proved that ar $(\triangle OCE) = ar (\triangle OBD)$. ### 15. Prove that a median divides a triangle into two triangles of equal area. Solution: We know that Area of \triangle ABD = $\frac{1}{2}$ × BD × AE In the same way Area of \triangle ADC = $\frac{1}{2}$ × DC × AE From the figure we know that D is the median So we get BD = DC We know that Area of \triangle ABD = $\frac{1}{2}$ × BD × AE It can be written as Area of \triangle ABD = $\frac{1}{2}$ × DC × AE So we get Area of \triangle ABD = Area of \triangle ADC Therefore, it is proved that a median divides a triangle into two triangles of equal area. ### 16. Show that a diagonal divides a parallelogram into two triangles of equal area. Solution: We know that Area of $$\triangle$$ ABD = $\frac{1}{2}$ × AB × DL(1) Area of $$\triangle$$ CBD = $\frac{1}{2}$ × CD × BE (2) Hence, ABCD is a parallelogram. It can be written as AB \parallel CD and AB = CD (3) We know that the distance between two parallel lines is constant t, So we get DL = BE(4) Using the equations (1), (2), (3) and (4) We get Area of \triangle ABD = $\frac{1}{2}$ × AB × DL It can be written as Area of \triangle ABD = $\frac{1}{2}$ × CD × BE So we get Area of \triangle ABD = Area of \triangle CBD Therefore, it is proved that a diagonal divides a parallelogram into two triangles of equal area. ## 17. In the adjoining figure, ABC and ABD are two triangles on the same base AB. If line segment CD is bisected by AB at O, show that ar $(\triangle ABC) = ar (\triangle ABD)$. ### **Solution:** From the figure we know that median of a triangle divides it into triangles of equal area We know that AO is the median of \triangle ACD It can be written as Area of \triangle COA = Area of \triangle DOA(1) We know that BO is the median of \triangle BCD It can be written as Area of \triangle COB = Area of \triangle DOB (2) By adding both the equations Area of \triangle COA + Area of \triangle COB = Area of \triangle DOA + Area of \triangle DOB So we get Area of \triangle ABC = Area of \triangle ABD Therefore, it is proved that ar $(\triangle ABC) = ar (\triangle ABD)$. ## 18. D and E are points on sides AB and AC respectively of \triangle ABC such that ar (\triangle BCD) = ar (\triangle BCE). Prove that DE || BC. **Solution:** From the figure we know that \triangle BCD and \triangle BCE have equal area and lie on the same base BC. We know that Altitude from D of \triangle BCD = Altitude from E of \triangle BCE So we know that \triangle BCD and \triangle BCE lie between the same parallel lines We get DE || BC Therefore, it is proved that DE || BC. ### 19. P is any point on the diagonal AC of a parallelogram ABCD. Prove that ar $(\triangle ADP)$ = ar $(\triangle ABP)$. Solution: Join the diagonal BD. From the figure we know that AC and BD are the diagonals intersecting at point O. We know that the diagonals of a parallelogram bisect each other. Thus, we get O as the midpoint of AC and BD. Median of triangle divides it into two triangles having equal area. Consider △ ABD We know that OA is the median So we get Area of \triangle AOD = Area of \triangle AOB(1) Consider △ BPD We know that OP is the median So we get Area of \triangle OPD = Area of \triangle OPB(2) By adding both the equations we get Area of \triangle AOD + Area of \triangle OPD = Area of \triangle AOB + Area of \triangle OPB So we get Area of \triangle ADP = Area of \triangle ABP Therefore, it is proved that ar $(\triangle ADP) = ar (\triangle ABP)$. 20. In the adjoining figure, the diagonals AC and BD of a quadrilateral ABCD intersect at O. If BO = OD, prove that ar $(\triangle ABC)$ = ar $(\triangle ADC)$. #### **Solution:** It is given that BO = OD From the figure we know that AO is the median of \triangle ABD So we get Area of \triangle AOD = Area of \triangle AOB(1) We know that OC is the median of \triangle CBD So we get Area of \triangle DOC = Area of \triangle BOC(2) By adding both the equations Area of \triangle AOD + Area of \triangle DOC = Area of \triangle AOB + Area of \triangle BOC So we get Area of \triangle ADC = Area of \triangle ABC Therefore, it is proved that ar $(\triangle ABC) = ar (\triangle ADC)$. 21. The vertex A of \triangle ABC is joined to a point D on the side BC. The midpoint of AD is E. Prove that ar (\triangle BEC) = $\frac{1}{2}$ ar (\triangle ABC). #### Solution: From the figure we know that BE is the median of \triangle ABD So we get Area of \triangle BDE = Area of \triangle ABE It can be written as Area of \triangle BDE = $\frac{1}{2}$ (Area of \triangle ABD) (1) From the figure we know that CE is the median of \triangle ADC So we get Area of \triangle CDE = Area of \triangle ACE It can be written as Area of \triangle CDE = $\frac{1}{2}$ (Area of \triangle ACD)(2) By adding both the equations Area of \triangle BDE + Area of \triangle CDE = $\frac{1}{2}$ (Area of \triangle ABD) + $\frac{1}{2}$ (Area of \triangle ACD) By taking ½ as common Area of \triangle BEC = $\frac{1}{2}$ (Area of \triangle ABD + Area of \triangle ACD) So we get Area of \triangle BEC = $\frac{1}{2}$ (Area of \triangle ABC) Therefore, it is proved that ar $(\triangle BEC) = \frac{1}{2}$ ar $(\triangle ABC)$. ## 22. D is the midpoint of side BC of \triangle ABC and E is the midpoint of BD. If O is the midpoint of AE, prove that ar $(\triangle$ BOE) = 1/8 ar $(\triangle$ ABC). ### **Solution:** From the figure we know that O is the midpoint of AE. We know that BO is the median of \triangle BAE So we get $$\operatorname{ar}\left(\triangle \operatorname{BOE}\right) = \frac{1}{2} \operatorname{ar}\left(\triangle \operatorname{ABE}\right) \dots (1)$$ We know that E is the midpoint of BD AE divides the \triangle ABD into two triangles of equal area So we get $$\operatorname{ar}\left(\triangle ABE\right) = \frac{1}{2} \operatorname{ar}\left(\triangle ABD\right) \dots (2)$$ We know that D is the midpoint of BC So we get $$ar (\triangle ABD) = \frac{1}{2} ar (\triangle ABC) \dots (3)$$ We know that ar (\triangle BOE) = $\frac{1}{2}$ ar (\triangle ABE) using equation (1) Substituting equation (2) in (1) $ar (\triangle BOE) = \frac{1}{2} (\frac{1}{2} ar (\triangle ABD))$ So we get $ar (\triangle BOE) = \frac{1}{4} ar (\triangle ABD)$ By substituting equation (3) $ar (\triangle BOE) = \frac{1}{4} (\frac{1}{2} ar (\triangle ABC))$ So we get ar $(\triangle BOE) = 1/8$ ar $(\triangle ABC)$ Therefore, it is proved that ar $(\triangle BOE) = 1/8$ ar $(\triangle ABC)$. 23. In a trapezium ABCD, AB \parallel DC and M is the midpoint of BC. Through M, a line PQ \parallel AD has been drawn which meets AB in P and DC produced in Q, as shown in the adjoining figure. Prove that ar (ABCD) = ar (APQD). #### **Solution:** Consider \triangle MCQ and \triangle MPB From the figure we know that \angle QCM and \angle PBM are alternate angles So we get \angle QCM = \angle PBM We know that M is the midpoint of BC CM = BM \angle CMQ and \angle PBM are vertically opposite angles \angle CMQ = \angle PBM By ASA congruence criterion \triangle MCQ \cong \triangle MPB So we get Area of \triangle MCQ = Area of \triangle MPB We know that Area of ABCD = Area of APQD + Area of DMPB – Area of \triangle MCQ So we get Area of ABCD = Area of APQD Therefore, it is proved that ar (ABCD) = ar (APQD). 24. In the adjoining figure, ABCD is a quadrilateral. A line through D, parallel to AC, meets BC produced in P. Prove that ar $(\triangle ABP) = ar$ (quad. ABCD). #### **Solution:** From the figure we know that \triangle ACP and \triangle ACD lie on the same base AC between parallel lines AC and DP It can be written as Area of \triangle ACP = Area of \triangle ACD By adding \triangle ABC to both LHS and RHS Area of \triangle ACP + Area of \triangle ABC = Area of \triangle ACD + Area of \triangle ABC So we get Area of \triangle ABP = Area of quadrilateral ABCD Therefore, it is proved that ar $(\triangle ABP) = ar$ (quad. ABCD). 25. In the adjoining figure, \triangle ABC and \triangle DBC are on the same base BC with A and D on opposite sides of BC such that ar (\triangle ABC) = ar (\triangle DBC). Show that BC bisects AD. #### **Solution:** Construct AP ⊥ BC and DQ ⊥ BC We know that Area of \triangle ABC = $\frac{1}{2} \times$ BC \times AP In the same way Area of \triangle BCD = $\frac{1}{2} \times$ BC \times DQ Equating both we get $\frac{1}{2} \times$ BC \times AP = $\frac{1}{2} \times$ BC \times DQ So we get $AP = DQ \dots (1)$ Consider \triangle AOP and \triangle QOD From the figure we know that \angle APO = \angle DQO = 90° We know that \angle AOP and \angle DOQ are vertically opposite angles \angle AOP = \angle DOQ By AAS congruence criterion \triangle AOP \cong \triangle QOD OA = OD (c. p. c. t) Therefore, it is proved that BC bisects AD. 26. ABCD is a parallelogram in which BC is produced to P such that CP = BC, as shown in the adjoining figure. AP intersects CD at M. If ar (DMB) = 7 cm², find the area of parallelogram ABCD. ### **Solution:** Consider \triangle ADM and \triangle PCM From the figure we know that \angle ADM and \angle PCM are alternate angles \angle ADM = \angle PCM We know that AD = BC = CP It can be written as AD = CP ∠ AMD and ∠ PMC are vertically opposite angles ∠ AMD = ∠ PMC By ASA congruence criterion \triangle ADM \cong \triangle PCM So we get Area of \triangle ADM = Area of \triangle PCM DM = CM (c. p. c. t) We know that BM is the median of \triangle BDC So we get Area of \triangle DMB = Area of \triangle CMB We get Area of \triangle BDC = 2 (Area of \triangle DMB) By substituting the value Area of \triangle BDC = 2 × 7 By multiplication Area of \triangle BDC = 14 cm² We know that Area of parallelogram ABCD = 2 (Area of \triangle BDC) So we get Area of parallelogram ABCD = 2×14 By multiplication Area of parallelogram ABCD = 28 cm^2 Therefore, area of parallelogram ABCD is 28 cm². 27. In a parallelogram ABCD, any point E is taken on the side BC. AE and DC when produced to meet at a point M. Prove that ar $(\triangle ADM) = ar (ABMC)$. Solution: Construct lines AC and BM. Let us take h as the distance between AB and CD We know that Area of \triangle ACD = $\frac{1}{2}$ × CD × h In the same way Area of \triangle ABM = $\frac{1}{2}$ × AB × h From the figure we know that AB = CD So it can be written as Area of \triangle ABM = $\frac{1}{2}$ × CD × h So we get Area of \triangle ABM = Area of \triangle ACD Let us add \triangle ACM on both sides Area of \triangle ABM + Area of \triangle ACM = Area of \triangle ACD + Area of \triangle ACM So we get Area of ABMC = Area of \triangle ADM Therefore, it is proved that ar $(\triangle ADM) = ar (ABMC)$. 28. P, Q, R, S are respectively the midpoints of the sides AB, BC, CD and DA of parallelogram ABCD. Show that PQRS is a parallelogram and also show that ar ($\|\text{gm PQRS}\| = \frac{1}{2} \times \text{ar}$ ($\|\text{gm ABCD}\|$). **Solution:** We know that Area of parallelogram PQRS = $\frac{1}{2}$ (Area of parallelogram ABCD) ### Construct diagonals AC, BD and SQ From the figure we know that S and R are the midpoints of AD and CD Consider △ ADC Using the midpoint theorem SR || AC From the figure we know that P and Q are the midpoints of AB and BC Consider △ ABC Using the midpoint theorem PQ || AC It can be written as $PQ \parallel AC \parallel SR$ So we get PQ || SR In the same way we get SP || RQ #### Consider △ ABD We know that O is the midpoint of AC and S is the midpoint of AD Using the midpoint theorem OS || AB ### Consider △ ABC Using the midpoint theorem $OQ \parallel AB$ It can be written as SQ || AB We know that ABQS is a parallelogram We get Area of \triangle SPQ = $\frac{1}{2}$ (Area of parallelogram ABQS)(1) In the same way we get Area of \triangle SRQ = $\frac{1}{2}$ (Area of parallelogram SQCD) (2) ### By adding both the equations Area of \triangle SPQ + Area of \triangle SRQ = ½ (Area of parallelogram ABQS + Area of parallelogram SQCD) So we get Area of parallelogram PQRS = $\frac{1}{2}$ (Area of parallelogram ABCD) Therefore, it is proved that ar ($\|gm PQRS$) = $\frac{1}{2} \times ar$ ($\|gm ABCD$). ## 29. In a triangle ABC, the medians BE and CF intersect at G. Prove that ar (\triangle BCG) = ar (AFGE). Solution: Draw a line EF We know that the line segment joining the midpoint of two sides of a triangle is parallel to the third side. So we get FE || BC From the figure we know that \triangle BEF and \triangle CEF lie on the same base EF between the same parallel lines So we get Area of \triangle BEF = Area of \triangle CEF By subtracting △ GEF both the sides Area of \triangle BEF – Area of \triangle GEF = Area of \triangle CEF – Area of \triangle GEF We get Area of \triangle BFG = Area of \triangle CEG (1) Median of a triangle divides it into two triangles having equal area Area of \triangle BEC = Area of \triangle ABE It can be written as Area of \triangle BGC + Area of \triangle CEG = Area of quadrilateral AFGE + Area of Area of \triangle BFG Using the equation (1) we get Area of \triangle BGC + Area of \triangle BFG = Area of quadrilateral AFGE + Area of Area of \triangle BFG We get Area of \triangle BGC = Area of quadrilateral AFGE Therefore, it is proved that ar $(\triangle BCG) = ar (AFGE)$. ## 30. The base BC of \triangle ABC is divided at D such that BD = $\frac{1}{2}$ DC. Prove that ar $(\triangle$ ABD) = $\frac{1}{3}$ × ar $(\triangle$ ABC). Solution: Construct AE ⊥ BC We know that Area of \triangle ABD = $\frac{1}{2}$ × BD × AE(1) Area of \triangle ABC = $\frac{1}{2}$ × BC × AE(2) It is given that $BD = \frac{1}{2} BC$ We get BC = BC + DC It can be written as BC = BD + 2BD So we get BC = 3BD By division $BD = 1/3 BC \dots (3)$ Using equation (1) we get Area of \triangle ABD = $\frac{1}{2}$ × BD × AE By substituting (3) Area of \triangle ABD = $\frac{1}{2} \times \frac{1}{3} \times$ BC \times AE So we get Area of \triangle ABD = 1/3 (1/2 × BC × AE) Substituting equation (2) Area of \triangle ABD = 1/3 × Area of \triangle ABC Therefore, it is proved that ar $(\triangle ABD) = 1/3 \times ar (\triangle ABC)$. ## 31. In the adjoining figure, BD || CA, E is the midpoint of CA and BD = $\frac{1}{2}$ CA. Prove that ar (\triangle ABC) = 2 ar (\triangle DBC). ### **Solution:** It is given that E is the midpoint of CA and $BD = \frac{1}{2} CA$ So we get BD = CE We know that BD || CA BD = CE In the same way BD || CE BD = CE Hence, BCED is a parallelogram. We know that \triangle DBC and \triangle EBC lie on the same base and between the same parallel lines So we get Area of \triangle DBC = Area of \triangle EBC (1) From the figure we know that BE is the median of \triangle ABC We get Area of \triangle BEC = $\frac{1}{2}$ (Area of \triangle ABC) Using equation (1) we get Area of \triangle DBC = $\frac{1}{2}$ (Area of \triangle ABC) So we get Area of \triangle ABC = 2 (Area of \triangle DBC) Therefore, it is proved that ar $(\triangle ABC) = 2$ ar $(\triangle DBC)$. 32. The given figure shows a pentagon ABCDE. EG, drawn parallel to DA, meets BA produced to G, and CF, drawn parallel to DB, meets AB produced at F. Show that ar (pentagon ABCDE) = ar (\triangle DGF). #### **Solution:** Consider \triangle DGA and \triangle AED We know that both the triangles have the same base AD and lie between the parallel lines AD and EG. Area of \triangle DGA = Area of \triangle AED(1) Consider \triangle DBC and \triangle BFD We know that both the triangles have the same base DB and lie between the parallel lines BD and CF. So we get Area of \triangle DBF = Area of \triangle BCD (2) By adding both the equations Area of \triangle DGA + Area of \triangle DBF = Area of \triangle AED + Area of \triangle BCD By adding \triangle ABD both sides Area of \triangle DGA + Area of \triangle DBF + Area of \triangle ABD = Area of \triangle AED + Area of \triangle BCD + Area of \triangle ABD So we get Area of \triangle DGF = Area of pentagon ABCDE Therefore, it is proved that ar (pentagon ABCDE) = ar (\triangle DGF). 33. In the adjoining figure, CE || AD and CF || BA. Prove that ar (\triangle CBG) = ar (\triangle AFG). ### **Solution:** From the figure we know that \triangle BCF and \triangle ACF lie on the same base CF between the same parallels CF and BA So we get Area of \triangle BCF = Area of \triangle ACF By subtracting △ CGF both sides Area of \triangle BCF – Area of \triangle CGF = Area of \triangle ACF – Area of \triangle CGF So we get Area of \triangle CBG = Area of \triangle AFG Therefore, it is proved that ar $(\triangle CBG) = ar (\triangle AFG)$. 34. In the adjoining figure, the point D divides the side BC of \triangle ABC in the ratio m: n. Prove that ar (\triangle ABD): ar (\triangle ADC) = m: n. #### **Solution:** We know that Area of \triangle ABD = $\frac{1}{2}$ × BD × AL Area of \triangle ADC = $\frac{1}{2}$ × DC × AL It is given that BD: DC = m: n It can be written as $BD = DC \times m/n$ We know that Area of \triangle ABD = $\frac{1}{2} \times$ BD \times AL By substituting BD Area of \triangle ABD = $\frac{1}{2}$ × (DC × m/n) × AL So we get Area of \triangle ABD = m/n × (1/2 × DC × AL) It can be written as Area of \triangle ABD = m/n × (Area of \triangle ADC)) We know that Area of \triangle ABD/ Area of \triangle ADC = m/n We can write it as Area of \triangle ABD: Area of \triangle ADC = m: n Therefore, it is proved that ar $(\triangle ABD)$: ar $(\triangle ADC) = m$: n. 35. In a trapezium ABCD, $AB \parallel DC$, AB = a cm, and DC = b cm. If M and N are the midpoints of the nonparallel sides, AD and BC respectively then find the ratio of ar (DCNM) and ar (MNBA). Join the diagonal DB which cuts the line MN at the point Y. We know that M and N are the midpoints of AD and BC So we get MN || AB || CD Consider △ ADB We know that M is the midpoint of AD and MY || AB So we get Y as the midpoint of DB It can be written as $MY = \frac{1}{2}AB$ Consider △ BDC We know that $NY = \frac{1}{2} CD$ We get MN = MY + YN By substituting the values $MN = \frac{1}{2}AB + \frac{1}{2}CD$ By taking out ½ as common $MN = \frac{1}{2} (AB + CD)$ It is given that AB = a and CD = b So we get MN = (a + b)/2 Construct DQ \perp AB where DQ cuts the line MN at the point P So we know that P is the midpoint of DQ It can be written as DP = PQ = h We get Area of trapezium DCNM = $\frac{1}{2}$ × (MN + CD) × DP By substituting Area of trapezium DCNM = $$\frac{1}{2}(\frac{a+b}{2}+b)h$$ So we get Area of trapezium DCNM = h/4 (a + 3b) (1) Area of trapezium MNBA = $\frac{1}{2}$ × (MN + AB) × PQ By substituting Area of trapezium MNBA = $$\frac{1}{2}(\frac{a+b}{2}+a)h$$ So we get Area of trapezium MNBA = h/4 (3a + b) (2) By dividing both the equations Area of trapezium DCNM / Area of trapezium MNBA = $\frac{h}{4}(a + 3b)$ / $\frac{h}{4}(3a + b)$ By cancelling the similar terms Area of trapezium DCNM / Area of trapezium MNBA = (a + 3b)/(3a + b) It can be written as Area of trapezium DCNM: Area of trapezium MNBA = (a + 3b): (3a + b) Therefore, ratio of ar (DCNM) and ar (MNBA) is (a + 3b): (3a + b) ### 36. ABCD is a trapezium in which AB || DC, AB = 16cm and DC = 24cm. If E and F are respectively the midpoints of AD and BC, prove that ar (ABFE) = 9/11 ar (EFCD). **Solution:** Join the diagonal AC such that it cuts the line EF at the point Y From the figure we know that E and F are the midpoints of AD and BC So we get EF | AB | CD Consider △ ACF We know that E is the midpoint of AD and EY || CD So we get Y as the midpoint of AC It can be written as $EY = \frac{1}{2}CD$ Consider △ ABC We get $FY = \frac{1}{2} AB$ We know that EF = EY + YF By substituting the values $EF = \frac{1}{2} CD + \frac{1}{2} AB$ By taking 1/2 as common $EF = \frac{1}{2} (CD + AB)$ By substituting the values EF = (24 + 16)/2 So we get EF = 20cm Construct AQ ⊥ DC such that AQ cuts EF at P We know that P is the midpoint of AQ So we get AP = PQ = h We get Area of trapezium ABFE = $1/2 \times (EF + AB) \times AP$ By substituting the values Area of trapezium ABFE = $\frac{1}{2}$ × (20 + 16) × h On further calculation Area of trapezium ABFE = $18h \text{ cm}^2$ Area of trapezium EFCD = $\frac{1}{2}$ × (EF + CD) × PQ By substituting the values Area of trapezium EFCD = $\frac{1}{2}$ × (20 + 24) × h On further calculation Area of trapezium EFCD = $22h \text{ cm}^2$ By division Area of trapezium ABFE/ Area of trapezium EFCD = 18h/ 22h So we get Area of trapezium ABFE/ Area of trapezium EFCD = 9/11 It can be written as Area of trapezium ABFE = $9/11 \times (Area of trapezium EFCD)$ Therefore, it is proved that ar (ABFE) = 9/11 ar (EFCD). 37. In the adjoining figure, D and E are respectively the midpoints of sides AB and AC of \triangle ABC. If PQ \parallel BC and CDP and BEQ are straight lines then prove that ar (\triangle ABQ) = ar (\triangle ACP). #### **Solution:** From the figure we know that D and E are the midpoints of AB and AC So we get DE || BC || PQ Consider △ ACP We know that AP || DE and E is the midpoint of AC Using the midpoint theorem we know that D is the midpoint of PC So we get $DE = \frac{1}{2}AP$ It can be written as AP = 2DE(1) Consider △ ABQ We know that AQ || DE and D is the midpoint of AB Using the midpoint theorem we know that E is the midpoint of BQ So we get $DE = \frac{1}{2}AQ$ It can be written as $AQ = 2DE \dots (2)$ Using equations (1) and (2) We get AP = AQ We know that \triangle ACP and \triangle ABQ lie on the bases AP and AQ between the same parallels BC and PQ So we get Area of \triangle ACP = Area of \triangle ABQ Therefore, it is proved that ar $(\triangle ABQ) = ar (\triangle ACP)$. 38. In the adjoining figure, ABCD and BQSC are two parallelograms. Prove that ar $(\triangle RSC) = ar (\triangle PQB)$. Consider \triangle RSC and \triangle PQB From the figure we know that RC \parallel PB and \angle CRS and \angle BPQ and \angle RSC and \angle PQB are corresponding angles It can be written as \angle CRS = \angle BPQ and \angle RSC = \angle PQB We know that the opposite sides of parallelogram are equal SC = QB By AAS congruence criterion $\triangle RSC \cong \triangle PQB$ So we get Area of \triangle RSC = Area of \triangle PQB Therefore, it is proved that ar $(\triangle RSC) = ar (\triangle PQB)$.