

EXERCISE 9A PAGE: 282

- 1. In the given figure, AB || CD and O is the midpoint of AD. Show that
- (i) $\triangle AOB \cong \triangle DOC$
- (ii) O is the midpoint of BC.

Solution:

(i) From the figure \triangle AOB and \triangle DOC

We know that AB \parallel CD and \angle BAO and \angle CDO are alternate angles

So we get

 \angle BAO = \angle CDO

From the figure we also know that O is the midpoint of the line AD

We can write it as AO = DO

According to the figure we know that \angle AOB and \angle DOC are vertically opposite angles.

So we get \angle AOB = \angle DOC

Therefore, by ASA congruence criterion we get

 \triangle AOB \cong \triangle DOC

(ii) We know that $\triangle AOB \cong \triangle DOC$

So we can write it as

BO = CO (c. p. c. t)

Therefore, it is proved that O is the midpoint of BC.

2. In the given figure, AD and BC are equal perpendiculars to a line segment AB. Show that CD bisects AB.

Solution:

Based on the \triangle AOD and \triangle BOC

From the figure we know that \angle AOD and \angle BOC are vertically opposite angles.

So we get

 $\angle AOD = \angle BOC$

We also know that

 $\angle DAO = \angle CBO = 90^{\circ}$

It is given that AD = BC

Therefore, by AAS congruence criterion we get

 $\triangle AOD \cong \triangle BOC$

So we get AO = BO (c. p. c. t)

Therefore, it is proved that CD bisects AB.

3. In the given figure, two parallel lines I and m are intersected by two parallel lines p and q. Show that \triangle ABC \cong \triangle CDA.

Solution:

Based on the \triangle ABC and \triangle CDA

We know that $p \parallel q$ and \angle BAC and \angle DCA are alternate interior angles

So we get

 $\angle BAC = \angle DCA$

We know that A and C are the common points for all the lines

So it can be written as

AC = CA

We know that $1 \parallel m$ and \angle BCA and \angle DAC are alternate interior angles

So we get

 \angle BCA = \angle DAC

Therefore, by ASA congruence rule it is proved that

 \triangle ABC \cong \triangle CDA

4. AD is an altitude of an isosceles \triangle ABC in which AB = AC. Show that

- (i) AD bisects BC,
- (ii) AD bisects $\angle A$.

Solution:

(i) Based on the \triangle BAD and \triangle CAD We know that AD is the altitude so the angle is 90° So we get $\angle ADB = \angle ADC = 90^{\circ}$ It is given that AB = AC and we know that AD is common Based on the RHS Congruence Criterion we get \triangle BAD \cong \triangle CAD So we get BD = CD (c. p. c. t)

Therefore, it is proved that AD bisects BC.

- We also know that \angle BAD = \angle CAD (c. p. c. t) (ii) Therefore, it is proved that AD bisects ∠ A.
- 5. In the given figure, BE and CF are two equal altitudes of \triangle ABC. Show that
- $\triangle ABE \cong \triangle ACF$, (i)
- AB = AC. (ii)

Solution:

Based on the \triangle ABE and \triangle ACF (i) We know that

 \angle AEB = \angle AFC = 90°

It is given that BE = CF

From the figure we know that $\angle A$ is common for both $\angle BAE$ and $\angle CAF$

So we get \angle BAE = \angle CAF = \angle A

Therefore, by ASA congruence criterion we get \triangle ABE \cong \triangle ACF

- (ii) As we know that \triangle ABE \cong \triangle ACF It is proved that AB = AC.
- 6. \triangle ABC and \triangle DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC. If AD is extended to interest BC at E, show that
- $\triangle ABD \cong \triangle ACD$ (i)
- $\triangle ABE \cong \triangle ACE$ (ii)
- (iii) AE bisects $\angle A$ as well as $\angle D$
- AE is the perpendicular bisector of BC. (iv)

Solution:

Based on the \triangle ABD and \triangle ACD (i)

> From \triangle ABC we know that AB and AC are equal sides of isosceles triangle So we get

AB = AC

From △ DBC we know that DB and DC are equal sides of isosceles triangle So we get

DB = DC

We also know that AD is common i.e. AD = AD

Therefore, by SSS congruence criterion we get \triangle ABD \cong \triangle ACD

(ii) We know that \triangle ABD \cong \triangle ACD We get \angle BAD = \angle CAD (c. p. c. t)

It can be written as

 $\angle BAE = \angle CAE \dots (1)$

Considering \triangle ABE and \triangle ACE

We know that AB and AC are the equal sides of isosceles \triangle ABC

AB = ACSo by using equation (1) we get $\angle BAE = \angle CAE$ We know that AE is common i.e. AE = AE

Therefore, by SAS congruence criterion we get \triangle ABE \cong \triangle ACE

(iii) We know that \triangle ABD \cong \triangle ACD We get \angle BAD = \angle CAD (c. p. c. t) It can be written as \angle BAE = \angle CAE Therefore, it is proved that AE bisects \angle A.

Considering \triangle BDE and \triangle CDE We know that BD and CD are equal to the constant of the const

We know that BD and CD are equal sides of isosceles \triangle ABC

Since \triangle ABE \cong \triangle ACE

BE = CE (c. p. c. t)

We know that DE is common i.e. DE = DE

Therefore, by SSS congruence criterion we get

 \triangle BDE \cong \triangle CDE

We know that \angle BDE = \angle CDE (c. p. c. t)

So DE bisects \angle D which means that AE bisects \angle D

Hence it is proved that AE bisects \angle A as well as \angle D.

(iv) We know that \triangle BDE \cong \triangle CDE

So we get

BE = CE and $\angle BED = \angle CED$ (c. p. c. t)

From the figure we know that \angle BED and \angle CED form a linear pair of angles

So we get

 \angle BED = \angle CED = 90°

We know that DE is the perpendicular bisector of BC

Therefore, it is proved that AE is the perpendicular bisector of BC.

7. In the given figure, if x = y and AB = CB then prove that AE = CD.

Solution:

It is given that x = y and AB = CB

By considering the \triangle ABE We know that Exterior \angle AEB = \angle EBA + \angle BAE By substituting \angle AEB as y we get $y = \angle$ EBA + \angle BAE

By considering the \triangle BCD We know that $x = \angle$ CBA + \angle BCD It is given that x = ySo we can write it as \angle CBA + \angle BCD = \angle EBA + \angle BAE On further calculation we can write it as \angle BCD = \angle BAE

Based on both \triangle BCD and \triangle BAE We know that B is the common point It is given that AB = BC It is proved that \angle BCD = \angle BAE

Therefore, by ASA congruence criterion we get \triangle BCD \cong \triangle BAE
We know that the corresponding sides of congruent triangles are equal Therefore, it is proved that AE = CD.

- 8. In the given figure, line I is the bisector of an angle \angle A and B is any point on I. If BP and BQ are perpendiculars from B to the arms of \angle A, show that
- (i) $\triangle APB \cong \triangle AQB$
- (ii) BP = BQ, i.e., B is equidistant from the arms of $\angle A$.

Solution:

(i) Considering △ APB and △ AQB
 We know that
 ∠ APB = ∠ AQC = 90°
 From the figure we know that l is the bisector of ∠ A

So we get $\angle BAP = \angle BAQ$ We know that AB is common i.e. AB = AB

Therefore, by AAS congruence criterion we get \triangle APB \cong \triangle AQB

- (ii) We know that $\triangle APB \cong \triangle AQB$ So it is proved that BP = BQ (c. p. c. t)
- 9. ABCD is a quadrilateral such that diagonal AC bisects the angles ∠ A and ∠ C. Prove that AB = AD and CB = CD.

Solution:

By considering \triangle ABC and \triangle ADC
We know that AC bisects at \angle A
So we get \angle BAC = \angle DAC
We know that AC is common i.e. AC = AC
From the figure we know that AC bisects at \angle C \angle BCA = \angle DCA

By ASA congruence criterion we get \triangle ABC \cong \triangle ADC

Therefore, it is proved that AB = AD and CB = CD (c. p. c. t)

10. △ ABC is a right triangle right angled at A such that AB = AC and bisector of ∠ C intersects the side AB at D. Prove that AC + AD = BC.

Solution:

Construct a triangle ABC where DE is perpendicular to BC

Consider the \triangle DAC and \triangle DEC

We know that

 \angle BAC = \angle DAC = 90°

From the figure we know that CD bisects \angle C

So we get

 \angle DCA = \angle DCE

We know that CD is common i.e. CD = CD

By AAS congruence criterion

 \triangle DAC \cong \triangle DEC

So we know that $DA = DE \dots (1)$

$$AC = EC (c. p. c. t) \dots (2)$$

It is given that AB = AC

We know that the angles opposite to equal sides are equal

$$\angle B = \angle C$$

We know that the sum of angles of \triangle ABC is 180°.

 $\angle A + \angle B + \angle C = 180^{\circ}$

By substituting the values

$$90^{\circ} + \angle B + \angle B = 180^{\circ}$$

On further calculation

 $2 \angle B = 180^{\circ} - 90^{\circ}$

 $2 \angle B = 90^{\circ}$

By division

 $\angle B = 45^{\circ}$

Considering the \triangle BED

We know that \angle BED = 90°

So we can write it as

$$\angle$$
 BDE + \angle B = 90°

By substituting the values

 $\angle BDE + 45^{\circ} = 90^{\circ}$

On further calculation

 $\angle BDE = 90^{\circ} - 45^{\circ}$

By subtraction

 \angle BDE = 45°

It can be written as

 \angle BDE = \angle DBE = 45°

We know that DE and BE are the equal sides of isosceles triangle

DE = BE(3)

By comparing the equations (1) and (3)

We get

 $DA = DE = BE \dots (4)$

We know that BC = BE + EC

By considering the equations (ii) and (iv)

We get

BC = DA + AC

We can also write it as

AC + AD = BC

Therefore, it is proved that AC + AD = BC.

11. In the given figure, OA = OB and OP = OQ. Prove that

- (i) PX = QX,
- (ii) AX = BX.

Solution:

It is given that OA = OB and OP = OQ

By considering the \triangle OAQ and \triangle OPB

Therefore, by SAS congruence criterion

 $\triangle OAQ = \triangle OPB$

We know that the corresponding parts of congruent triangles are equal

So we get

 $\angle OBP = \angle OAQ \dots (1)$

Consider \triangle BXQ and \triangle PXA

We can write it as

BQ = OB - OQ and PA = OA - OP

We know that OP = OQ and is given that OA = OBSo we get BQ = PA (2)

In \triangle BXQ and \triangle PXA We know that \angle BXQ and \angle PXA are vertically opposite angles \angle BXQ = \angle PXA

From (1) and (2) and AAS congruence criterion we get \triangle BXQ \cong \triangle PXA

So we get PX = QX and AX = BX (c. p. c. t)

12. In the given figure, ABC is an equilateral triangle; PQ || AC and AC is produced to R such that CR = BP. Prove that QR bisects PC.

Solution:

It is given that ABC is an equilateral triangle; PQ \parallel AC and AC is produced to R such that CR = BP Consider QR intersecting the line PC at point M We know that \triangle ABC is an equilateral triangle So we get \angle A = \angle ACB = 60°

From the figure we know that PQ \parallel AC and \angle BPQ and \angle ACB are corresponding angles So we get

 $\angle BPQ = \angle ACB = 60^{\circ}$

Based on the \triangle BPQ we know that

 $\angle B = \angle ACB = 60^{\circ}$

It can be written as

 $\angle BQP = 60^{\circ}$

According to the figure we know that \triangle BPQ is an equilateral triangle

So we get

PQ = BP = BQ

It is given that CR = BP so we get

$$PQ = CR(1)$$

In the \triangle PMQ and \triangle CMR we know that PQ || AC and QR is the transversal

We know that \angle PQM and \angle CRM are alternate angles and \angle PMQ and \angle CMR are vertically opposite angles

 $\angle PQM = \angle CRM$

 $\angle PMQ = \angle CMR$

By considering equation (1) and AAS congruence criterion

 $\triangle PMQ \cong \triangle CMR$

We know that the corresponding parts of congruent triangles are equal

PM = MC

Therefore, it is proved that QR bisects PC.

- 13. In the given figure, ABCD is a quadrilateral in which AB || DC and P is the midpoint of BC. On producing, AP and DC meet at Q. Prove that
- (i) AB = CQ,
- (ii) DQ = DC + AB.

Solution:

It is given that

ABCD is a quadrilateral in which AB || DC and P is the midpoint of BC

Considering \triangle ABP and \triangle PCQ

We know that \angle PAB and \angle PQC are alternate angles and \angle APB and \angle CPQ are vertically opposite angles

$$\angle PAB = \angle PQC$$

$$\angle APB = \angle CPQ$$

According to AAS congruence criterion

$$\triangle$$
 ABP \cong \triangle PCQ

$$AB = CQ (c. p. c. t)(i)$$

We know that

$$DQ = DC + CQ$$

By substituting CQ as AB we get

$$DQ = DC + AB \dots$$
 (ii)

Therefore, it is proved that AB = CQ and DQ = DC + AB.

14. In the given figure, ABCD is a square and P is a point inside it such that PB = PD. Prove that CPA

is a straight line.

Solution:

It is given that ABCD is a square and P is a point inside it such that PB = PD

Considering \triangle APD and \triangle APB

We know that all the sides are equal in a square

So we get DA = AB

AP is common i.e. AP = AP

According to SSS congruence criterion

 $\triangle APD \cong \triangle APB$

We get $\angle APD = \angle APB$ (c. p. c. t)..... (1)

Considering \triangle CPD and \triangle CPB

We know that all the sides are equal in a square

So we get CD = CB

CP is common i.e. CP = CP

According to SSS congruence criterion

 \triangle CPD \cong \triangle CPB

We get $\angle CPD = \angle CPB$ (c. p. c. t).... (2)

By adding both the equation (1) and (2)

$$\angle APD + \angle CPD = \angle APB + \angle CPB \dots (3)$$

From the figure we know that the angles surrounding the point P is 360°

So we get

$$\angle APD + \angle CPD + \angle APB + \angle CPB = 360^{\circ}$$

By grouping we get

$$\angle APB + \angle CPB = 360^{\circ} - (\angle APD + \angle CPD) \dots (4)$$

Now by substitution of (4) in (3)

$$\angle$$
 APD + \angle CPD = 360° - (\angle APD + \angle CPD)

On further calculation

$$2 (\angle APD + \angle CPD) = 360^{\circ}$$

By division we get

$$\angle APD + \angle CPD = 180^{\circ}$$

Therefore, it is proved that CPA is a straight line.

15. In the given figure, O is a point in the interior of square ABCD such that \triangle OAB is an equilateral triangle. Show that \triangle OCD is an isosceles triangle.

Solution:

We know that \triangle OAB is an equilateral triangle So it can be written as

$$\angle$$
 OAB = \angle OBA = AOB = 60°

From the figure we know that ABCD is a square So we get

$$\angle A = \angle B = \angle C = \angle D = 90^{\circ}$$

In order to find the value of ∠ DAO

We can write it as

$$\angle A = \angle DAO + \angle OAB$$

By substituting the values we get

 $90^{\circ} = \angle DAO + 60^{\circ}$

On further calculation

$$\angle DAO = 90^{\circ} - 60^{\circ}$$

By subtraction

$$\angle DAO = 30^{\circ}$$

We also know that \angle CBO = 30°

Considering the \triangle OAD and \triangle OBC

We know that the sides of a square are equal

AD = BC

We know that the sides of an equilateral triangle are equal

OA = OB

By SAS congruence criterion

 $\triangle OAD \cong \triangle OBC$

So we get OD = OC(c. p. c. t)

Therefore, it is proved that \triangle OCD is an isosceles triangle.

16. In the adjoining figure, X and Y are respectively two points on equal sides AB and AC of \triangle ABC such that AX = AY. Prove that CX = BY.

Solution:

It is given that AX = AYConsidering \triangle AXC and \triangle AYB \angle A is common i.e. \angle A = \angle A We know that the sides of equilateral triangle are equal so we get AC = ABBy SAS congruence criterion \triangle AXC \cong \triangle AYB XC = YB (c. p. c. t)

Therefore, it is proved that CX = BY.

17. In △ ABC, D is the midpoint of BC. If DL ⊥ AB and DM ⊥ AC such that DL = DM, prove that AB =AC.

Solution:

It is given that D is the midpoint of BC DL \perp AB and DM \perp AC such that DL = DM Considering \triangle BLD and \triangle CMD as right angled triangle

So we can write it as $\angle BLD = \angle CMD = 90^{\circ}$ We know that BD = CD and DL = DM By RHS congruence criterion $\triangle BLD = \triangle CMD$ $\angle ABD = \angle ACD$ (c. p. c. t)

Now, in \triangle ABC \angle ABD = \angle ACD

We know that the sides opposite to equal angles are equal so we get AB = AC

Therefore, it is proved that AB = AC.

18. In \triangle ABC, AB = AC and the bisectors \angle B and \angle C meet at a point O. Prove that BO = CO and the ray AO is the bisector of \angle A.

Solution:

It is given that AB = AC and the bisectors $\angle B$ and $\angle C$ meet at a point O

Consider △ BOC

So we get

 \angle BOC = $\frac{1}{2}$ \angle B and \angle OCB = $\frac{1}{2}$ \angle C

It is given that AB = AC so we get $\angle B = \angle C$

So we get

 \angle OBC = \angle OCB

We know that if the base angles are equal even the sides are equal

So we get $OB = OC \dots (1)$

 \angle B and \angle C has the bisectors OB and OC so we get

 $\angle ABO = \frac{1}{2} \angle B$ and $\angle ACO = \frac{1}{2} \angle C$

So we get

 $\angle ABO = \angle ACO \dots (2)$

Considering \triangle ABO and \triangle ACO and equation (1) and (2)

It is given that AB = AC

By SAS congruence criterion \triangle ABO \cong \triangle ACO \angle BAO = \angle CAO (c. p. c. t)

Therefore, it is proved that BO = CO and the ray AO is the bisector of $\angle A$.

19. The line segments joining the midpoints M and N are parallel sides AB and DC respectively of a trapezium ABCD is perpendicular to both the sides AB and DC. Prove that AD = BC. Solution:

Construct AN and BN at the point N

Consider \triangle ANM and \triangle BNM

We know that N is the midpoint of the line AB

So we get

AM = BM

From the figure we know that \angle AMN = \angle BMN = 90° MN is common i.e. MN = MN By SAS congruence criterion \triangle ANM \cong \triangle BNM AN = BN (c. p. c. t) (1)

We know that \angle ANM = \angle BNM (c. p. c. t) Subtracting LHS and RHS by 90° 90° - \angle ANM = 90° - \angle BNM So we get \angle AND = \angle BNC (2)

Now, consider \triangle AND and \triangle BNC AN = BN \angle AND = \angle BNC We know that N is the midpoint of the line DC DN = CN By SAS congruence criterion \triangle AND \cong \triangle BNC AD = BC (c. p. c. t)

Therefore, it is proved that AD = BC.

20. The bisectors ∠ B and ∠ C of and isosceles triangle with AB = AC intersect each other at a point O. BO is produced to meet AC at a point M. Prove that ∠ MOC = ∠ ABC. Solution:

Consider \triangle ABC It is given that AB = AC So we get \angle ABC = \angle ACB Dividing both sides by 2 we get $\frac{1}{2}$ \angle ABC = $\frac{1}{2}$ \angle ACB So we get \angle OBC = \angle OCB

By using the exterior angle property
We get $\angle MOC = \angle OBC + \angle OCB$ We know that $\angle OBC = \angle OCB$ So we get $\angle MOC = 2 \angle OBC$ We know that OB is the bisector of $\angle ABC$ $\angle MOC = \angle ABC$

Therefore, it is proved that \angle MOC = \angle ABC.

21. The bisectors of \angle B and \angle C of an isosceles \triangle ABC with AB = AC intersect each other at a point O. Show that the exterior angle adjacent to \angle ABC is equal to \angle BOC. Solution:

Considering the \triangle ABC It is given that AB = AC

So we get

 $\angle ABC = \angle ACB$

Dividing by 2 both sides

 $\frac{1}{2} \angle ABC = \frac{1}{2} \angle ACB$

So we get

 \angle OBC = \angle OCB (1)

By using the angle sum property in \triangle BOC

 $\angle BOC + \angle OBC + \angle OCB = 180^{\circ}$

Substituting equation (1)

 \angle BOC + 2 \angle OBC = 180°

So we get

 \angle BOC + \angle ABC = 180°

From the figure we know that ∠ ABC and ∠ ABP form a linear pair of angles so we get

 \angle ABC + \angle ABP = 180°

 $\angle ABC = 180^{\circ} - \angle ABP$

By substituting the value in the above equation we get

 $\angle BOC + (180^{\circ} - \angle ABP) = 180^{\circ}$

On further calculation

 $\angle BOC + 180^{\circ} - \angle ABP = 180^{\circ}$

By subtraction

 \angle BOC - \angle ABP = 180° - 180°

 \angle BOC - \angle ABP = 0

 \angle BOC = \angle ABP

Therefore, it is proved that the exterior angle adjacent to \angle ABC is equal to \angle BOC.

22. P is a point on the bisector of ∠ ABC. If the line through P, parallel to BA meets BC at Q, prove that \triangle BPQ is an isosceles triangle.

Solution:

We know that AB || PQ and BP is a transversal

From the figure we know that \angle ABP and \angle BPQ are alternate angles

So we get

 $\angle ABP = \angle BPQ \dots (1)$

We also know that BP is the bisector of \angle ABC

So we get

 \angle ABP = \angle PBC and \angle ABP = \angle PBQ (2)

By considering equation (1) and (2) we get

 $\angle BPQ = \angle PBQ$

We know that the sides opposite to equal angles are equal

PQ = BQ

Therefore, it is proved that \triangle BPQ is an isosceles triangle.

23. The image of an object placed at a point A before a plane mirror LM is seen at the point B by an observer at D, as shown in the figure. Prove that the image is as far behind the mirror as the object is in front of the mirror.

Solution:

According to the figure we need to prove that AT = BT

We know that

Angle of incidence = Angle of reflection

So we get

 $\angle ACN = \angle DCN \dots (1)$

We know that AB || CN and AC is the transversal

From the figure we know that ∠ TAC and ∠ ACN are alternate angles

 $\angle TAC = \angle CAN \dots (2)$

We know that AB \parallel CN and BD is the transversal From the figure we know that \angle TBC and \angle DCN are corresponding angles \angle TBC = \angle DCN (3)

By considering the equation (1), (2) and (3)

We get

 $\angle TAC = \angle TBC \dots (4)$

Now in \triangle ACT and \triangle BCT

 \angle ATC = \angle BTC = 90°

CT is common i.e. CT = CT

By AAS congruence criterion

 $\triangle ACT \cong \triangle BCT$

AT = BT (c. p. c. t)

Therefore, it is proved that the image is as far behind the mirror as the object is in front of the mirror.

24. In the adjoining figure, explain how one can find the breadth of the river without crossing it.

Solution:

Consider AB as the breadth of the river. Take a point M at a distance from B. Draw a perpendicular from the point M and name it as N so that it joins the point A as a straight line.

Now in \triangle ABO and \triangle NMO

We know that

 \angle OBA = \angle OMN = 90°

We know that O is the midpoint of the line BM

So we get

OB = OM

From the figure we know that \angle BAO and \angle MON are vertically opposite angles \angle BAO = \angle MON

By ASA congruence criterion

 \triangle ABO \cong \triangle NMO

AB = NM (c. p. c. t)

Therefore, MN is the width of the river.

25. In a \triangle ABC, D is the midpoint of side AC such that BD = $\frac{1}{2}$ AC. Show that \angle ABC is a right angle. Solution:

From the figure we know that D is the midpoint of the line AC

So we get

 $AD = CD = \frac{1}{2} AC$

It is given that $BD = \frac{1}{2} AC$

So we can write it as

AD = BD = CD

Let us consider AD = BD

We know that the angles opposite to equal sides are equal

So we get

 $\angle BAD = \angle ABD \dots (1)$

Let us consider CD = BD

We know that the angles opposite to equal sides are equal

So we get

 \angle BCD = \angle CBD (2)

By considering the angle sum property in \triangle ABC

We get

 $\angle ABC + \angle BAC + \angle BCA = 180^{\circ}$

So we can write it as

 $\angle ABC + \angle BAD + \angle BCD = 180^{\circ}$

By using equation (1) and (2) we get

 \angle ABC + \angle ABD + \angle CBD = 180°

So we get

 \angle ABC + \angle ABC = 180°

By addition

 $2 \angle ABC = 180^{\circ}$

By division

 \angle ABC = 90°

Therefore, ∠ ABC is a right angle.

26. "If two sides and an angle of one triangle are equal to two sides and an angle of another triangle

then the two triangles must be congruent." Is the statement true? Why? Solution:

The statement is false.

If two sides and the included angle of one triangle are equal to corresponding two sides and the included angle of another triangle then the two triangles must be congruent.

27. "If two angles and a side of one triangle are equal to two angles and a side of another triangle then the two triangles must be congruent." Is the statement true? Why? Solution:

The statement is false.

If two angles and the corresponding side of one triangle are equal to the two included angles and the corresponding side of another triangle then the two triangles must be congruent.

EXERCISE 9B

PAGE: 296

- 1. Is it possible to construct a triangle with lengths of its sides as given below? Give reason for your answer.
- (i) 5cm, 4cm, 9cm
- (ii) 8cm, 7cm, 4cm
- (iii) 10cm, 5cm, 6cm
- (iv) 2.5cm, 5cm, 7cm
- (v) 3cm, 4cm, 8cm

Solution:

- (i) No. It is not possible to construct a triangle with lengths of its sides 5cm, 4cm and 9cm because the sum of two sides is not greater than the third side i.e. 5 + 4 is not greater than 9.
- (ii) Yes. It is possible to construct a triangle with lengths of its sides 8cm, 7cm and 4cm because the sum of two sides of a triangle is greater than the third side.
- (iii) Yes. It is possible to construct a triangle with lengths of its sides 10cm, 5cm and 6cm because the sum of two sides of a triangle is greater than the third side.
- (iv) Yes. It is possible to construct a triangle with lengths of its sides 2.5cm, 5cm and 7cm because the sum of two sides of a triangle is greater than the third side.
- (v) No. It is not possible to construct a triangle with lengths of its sides 3cm, 4cm and 8cm because the sum of two sides is not greater than the third side.

2. In \triangle ABC, \angle A = 50° and \angle B = 60°. Determine the longest and the shortest sides of the triangle. Solution:

Consider △ ABC

Based on the sum property we can write it as

$$\angle A + \angle B + \angle C = 180^{\circ}$$

By substituting the values we get

$$50^{\circ} + 60^{\circ} + \angle C = 180^{\circ}$$

On further calculation

$$\angle C = 180^{\circ} - 50^{\circ} - 60^{\circ}$$

By subtraction

$$\angle C = 180^{\circ} - 110^{\circ}$$

 $\angle C = 70^{\circ}$

So we have $\angle A \le \angle B \le \angle C$

We get

BC < AC < AB

Therefore, the longest side of the triangle is AB and the shortest side is BC.

3.

- (i) In \triangle ABC, \angle A = 90°. What is the longest side?
- (ii) In \triangle ABC, \angle A = \angle B = 45°. Which is its longest side?
- (iii) In \triangle ABC, \angle A = 100° and \angle C = 50°. Which is its shortest side?

Solution:

(i) It is given that $\angle A = 90^{\circ}$

We know that in a right angled triangle the highest angle is 90° and the sum of all the angles is 180° So we get that \angle A is the greatest angle in \triangle ABC

Hence, BC is the longest side which is opposite to $\angle A$

(ii) In \triangle ABC it is given that \angle A = \angle B = 45°

Based on the sum property of the triangle

$$\angle A + \angle B + \angle C = 180^{\circ}$$

To find $\angle C$

$$\angle C = 180^{\circ} - \angle A - \angle B$$

By substituting the values in the above equation

$$\angle C = 180^{\circ} - 45^{\circ} - 45^{\circ}$$

By subtraction

$$\angle C = 180^{\circ} - 90^{\circ}$$

$$\angle C = 90^{\circ}$$

So we get that \angle C is the greatest angle in \triangle ABC

Hence, AB is the longest side which is opposite to $\angle C$.

(iii) In \triangle ABC it is given that \angle A = 100° and \angle C = 50°

Based on the sum property of the triangle

$$\angle A + \angle B + \angle C = 180^{\circ}$$

To find \angle B

$$\angle B = 180^{\circ} - \angle A - \angle C$$

By substituting the values in the above equation

$$\angle B = 180^{\circ} - 100^{\circ} - 50^{\circ}$$

By subtraction

$$\angle B = 180^{\circ} - 150^{\circ}$$

$$\angle B = 30^{\circ}$$

So we get $\angle B \le \angle C \le \angle A$

i.e.
$$AC < AB < BC$$

Hence, AC is the shortest side in \triangle ABC.

- 4. In \triangle ABC, side AB is produced to D such that BD = BC. If \angle A = 70° and \angle B = 60°, prove that
- $(i) \qquad AD > CD$
- (ii) AD > AC.

In \triangle ABC it is given that \angle A = 70° and \angle B = 60°

Based on the sum property of the triangle

 $\angle A + \angle B + \angle C = 180^{\circ}$

To find ∠ C

 $\angle C = 180^{\circ} - \angle A - \angle B$

By substituting the values in the above equation

 $\angle C = 180^{\circ} - 70^{\circ} - 60^{\circ}$

 $\angle C = 180^{\circ} - 130^{\circ}$

By subtraction

 $\angle C = 50^{\circ}$

Consider △ BCD

We know that \angle CBD is the exterior angle of \angle ABC

So we get

 $\angle CBD = \angle DAC + \angle ACB$

By substituting the values in the above equation

 \angle CBD = $70^{\circ} + 50^{\circ}$

By addition

∠ CBD = 120°

It is given that BC = BD

So we can write it as

 $\angle BCD = \angle BDC$

Based on the sum property of the triangle

 \angle BCD + \angle BDC + \angle CBD = 180°

So we get

 \angle BCD + \angle BDC = 180° - \angle CBD

By substituting values in the above equation

 $\angle BCD + \angle BDC = 180^{\circ} - 120^{\circ}$

 \angle BCD + \angle BDC = 60°

It can be written as

 $2 \angle BCD = 60^{\circ}$

By division

 \angle BCD = \angle BDC = 30°

In \triangle ACD

It is given that $\angle A = 70^{\circ}$ and $\angle B = 60^{\circ}$

We can write it as

 \angle ACD = \angle ACB + \angle BCD

By substituting the values we get

 $\angle ACD = 50^{\circ} + 30^{\circ}$

By addition

 $\angle ACD = 80^{\circ}$

So we get to know that \angle ACD is the greatest angle and the side opposite to it i.e. AD is the longest side.

Therefore, it is proved that AD > CD

We know that \angle BDC is the smallest angle and the side opposite to it i.e. AC is the shortest side. Therefore, it is proved that AD > AC.

5. In the given figure, $\angle B < \angle A$ and $\angle C < \angle D$. Show that AD < BC.

Solution:

In the figure it is given that \angle B \leq \angle A and \angle C \leq \angle D Consider triangle AOB Since \angle B \leq \angle A We get AO \leq BO (1)

Consider triangle COD Since \angle C < \angle D DO < CO (2) By adding both the equations we get AO + DO < BO + CO So we get AD < BC

Therefore, it is proved that AD < BC.

6. AB and CD are respectively the smallest and largest sides of a quadrilateral ABCD. Show that $\angle A > \angle C$ and $\angle B > \angle D$.

Construct two lines AC and BD in the given quadrilateral

Consider \triangle ABC We know that BC > AB It can be written as \angle BAC > \angle ACB(i)

Consider \triangle ACD We know that CD > AD It can be written as \angle CAD > \angle ACD (ii)

By adding both the equations we get \angle BAC + \angle CAD > \angle ACB + \angle ACD So we get \angle A > \angle C

Consider \triangle ADB We know that AD > AB It can be written as \angle ABD > \angle ADB (iii)

Consider \triangle BDC We know that CD > BC It can be written as \angle CBD > \angle BDC (iv)

By adding both the equations we get \angle ABD + \angle CBD > \angle ADB + \angle BDC So we get \angle B > \angle D

7. In a quadrilateral ABCD, show that (AB + BC + CD + DA) > (AC + BD).

Solution:

Consider △ ABC
We know that

 $AB + BC > AC \dots (1)$

Consider \triangle ACD

We know that

DA + CD > AC (2)

Consider △ ADB

We know that

DA + AB > BD (3)

Consider \triangle BDC

We know that

 $BC + CD > BD \dots (4)$

By adding all the equations

AB + BC + DA + CD + DA + AB + BC + CD > AC + AC + BD + BD

So we get

2 (AB + BD + CD + DA) > 2 (AC + BD)

Dividing by 2 both the sides

AB + BD + CD + DA > AC + BD

Therefore, it is proved that AB + BD + CD + DA > AC + BD.

8. In a quadrilateral ABCD, show that (AB + BC + CD + DA) < 2 (BD + AC).

Consider △ AOB

We know that

AO + BO > AB(1)

Consider △ BOC

We know that

BO + CO > BC (2)

Consider △ COD

We know that

CO + DO > CD (3)

Consider △ AOD

We know that

DO + AO > DA (4)

By adding all the equations

AO + BO + BO + CO + CO + DO + DO + AO > AB + BC + CD + DA

So we get

2 (AO + CO) + 2 (BO + DO) > AB + BC + CD + DA

On further calculation

2AC + 2BD > AB + BC + CD + DA

By taking 2 as common

2(AC + BD) > AB + BC + CD + DA

So we get

AB + BC + CD + DA < 2 (AC + BD)

Therefore, it is proved that AB + BC + CD + DA < 2 (AC + BD)

9. In \triangle ABC, \angle B = 35°, \angle C = 65° and the bisector of \angle BAC meets BC in X. Arrange AX, BX and CX in descending order.

Solution:

Consider △ ABC

By sum property of a triangle

 $\angle A + \angle B + \angle C = 180^{\circ}$

To find $\angle A$

 $\angle A = 180^{\circ} - \angle B - \angle C$

By substituting the values

 $\angle A = 180^{\circ} - 35^{\circ} - 65^{\circ}$

By subtraction

 $\angle A = 180^{\circ} - 100^{\circ}$

 $\angle A = 80^{\circ}$

We know that

 $\angle BAX = \frac{1}{2} \angle A$

So we get

 $\angle BAX = \frac{1}{2} (80^{\circ})$

By division

 $\angle BAX = 40^{\circ}$

Consider △ ABX

It is given that $\angle B = 35^{\circ}$ and $\angle BAX = 40^{\circ}$

By sum property of a triangle

 $\angle BAX + \angle BXA + \angle XBA = 180^{\circ}$

To find ∠ BXA

 \angle BXA = 180° - \angle BAX - \angle XBA

By substituting values

 $\angle BXA = 180^{\circ} - 35^{\circ} - 40^{\circ}$

By subtraction

 $\angle BXA = 180^{\circ} - 75^{\circ}$

 \angle BXA = 105°

We know that \angle B is the smallest angle and the side opposite to it i.e. AX is the smallest side. So we get AX < BX (1)

Consider △ AXC

 $\angle CAX = \frac{1}{2} \angle A$

So we get

 $\angle CAX = \frac{1}{2} (80^{\circ})$

By division

 $\angle CAX = 40^{\circ}$

By sum property of a triangle

 $\angle AXC + \angle CAX + \angle CXA = 180^{\circ}$

To find $\angle AXC$

 $\angle AXC = 180^{\circ} - \angle CAX - \angle CXA$

By substituting values

 $\angle AXC = 180^{\circ} - 40^{\circ} - 65^{\circ}$

So we get

 $\angle AXC = 180^{\circ} - 105^{\circ}$

By subtraction

 \angle AXC = 75°

So we know that \angle CAX is the smallest angle and the side opposite to it i.e. CX is the smallest side.

We get

 $CX < AX \dots (2)$

By considering equation (1) and (2)

BX > AX > CX

Therefore, BX > AX > CX is the descending order.

10. In the given figure, PQ > PR and QS and RS are the bisectors of \angle Q and \angle R respectively. Show that SQ > SR.

Consider \triangle PQR It is given that PQ > PR So we get \angle PRQ > \angle PQR Dividing both sides by 2 we get $\frac{1}{2}$ \angle PRQ > $\frac{1}{2}$ \angle PQR From the figure we get \angle SRQ > \angle SQR So we get SQ > SR

Therefore, it is proved that SQ > SR.

11. D is any point on the side AC of \triangle ABC with AB = AC. Show that CD < BD. Solution:

Consider \triangle ABC It is given that AB = AC So we get \angle ABC = \angle ACB(1)

From the figure we know that \angle ABC = \angle ADB + \angle DBC So we get \angle ABC > \angle DBC From equation (1) \angle ACB > \angle DBC i.e. \angle DCB > \angle DBC It means that BD > CD So we get CD < BD

Therefore, it is proved that CD < BD.

12. Prove that in a triangle, other than an equilateral triangle, angle opposite the longest side is greater 2/3 of a right angle.

Solution:

Consider \triangle PQR where PR is the longest side So we get PR > PQ

i.e. $\angle Q \ge \angle R \dots (1)$

We also know that PR > QR i.e. $\angle Q > \angle P$ (2)

By adding both the equations

$$\angle Q + \angle Q > \angle R + \angle P$$

So we get

 $2 \angle Q > \angle R + \angle P$

By adding ∠ Q on both LHS and RHS

 $2 \angle Q + \angle Q > \angle R + \angle P + \angle Q$

We know that $\angle R + \angle P + \angle Q = 180^{\circ}$

So we get

 $3 \angle Q > 180^{\circ}$

By division

 $\angle Q > 60^{\circ}$

So we get

 \angle Q > 2/3 (90°) i.e. \angle Q > 2/3 of a right angle

Therefore, it is proved that in a triangle, other than an equilateral triangle, angle opposite the longest side is greater 2/3 of a right angle.

13. In the given figure, prove that

- (i) CD + DA + AB > BC
- (ii) CD + DA + AB + BC > 2AC.

Solution:

(i) Consider \triangle CDA We know that CD + DA > AC (1)

> Consider \triangle ABC We know that AC + AB > BC 21)

By adding both the equations we get CD + DA + AC + AB > AC + BCBy subtracting AC on both the sides CD + DA + AC + AB - AC > AC + BC - ACSo we get CD + DA + AB > BC

Therefore, it is proved that CD + DA + AB > BC.

(ii) Consider \triangle CDA We know that CD + DA > AC (1)

> Consider \triangle ABC We know that AB + BC > AC (2)

By adding both the equations we get CD + DA + AB + BC > AC + AC

So we get CD + DA + AB + BC > 2AC

Therefore, it is proved that CD + DA + AB + BC > 2AC.

14. If O is a point within \triangle ABC, show that

- (i) AB + AC > OB + OC
- (ii) AB + BC + CA > OA + OB + OC
- (iii) $OA + OB + OC > \frac{1}{2} (AB + BC + CA)$

Solution:

(i) It is given that O is a point within △ ABC
 Consider △ ABC
 We know that AB + AC > BC (1)

Consider \triangle OBC We know that OB + OC > BC (2)

By subtracting both the equations we get (AB + AC) - (OB + OC) > BC - BCSo we get (AB + AC) - (OB + OC) > 0AB + AC > OB + OC

Therefore, it is proved that AB + AC > OB + OC.

(ii) We know that AB + AC > OB + OC
In the same way we can write
AB + BC > OA + OC and AC + BC > OA + OB
By adding all the equations we get
AB + AC + AB + BC + AC + BC > OB + OC + OA + OC + OA + OB
So we get
2 (AB + BC + AC) > 2 (OA + OB + OC)
Dividing by 2 both sides
AB + BC + AC > OA + OB + OC

(iii) Consider \triangle OAB We know that OA + OB > AB (1)

> Consider \triangle OBC We know that OB + OC > BC (2)

Consider \triangle OCA OC + OA > CA (3)

By adding all the equations OA + OB + OB + OC + OC + OA > AB + BC + CA

So we get 2 (OA + OB + OC) > AB + BC + CADividing by 2 $OA + OB + OC > \frac{1}{2} (AB + BC + CA)$

Therefore, it is proved that $OA + OB + OC > \frac{1}{2} (AB + BC + CA)$.

15. In the given figure, AD \perp BC and CD > BD. Show that AC > AB.

Consider point S on the line BC so that BD = SD and join AS.

Consider \triangle ADB and \triangle ADS

We know that SD = BD

Since AD is a perpendicular we know that

 $\angle ADB = \angle ADS = 90^{\circ}$

AD is common i.e. AD = AD

By SAS congruence criterion

 $\triangle ADB \cong \triangle ADS$

AB = AS (c. p. c. t)

Consider △ ABS

We know that AB = AS

From the figure we know that \angle ASB and \angle ABS are angles opposite to the equal sides \angle ASB = \angle ABS (1)

Consider △ ACS

From the figure we know that \angle ASB and \angle ACS are angles opposite to the equal sides \angle ASB = \angle ACS (2)

Considering the equations (1) and (2)

 $\angle ABS > \angle ACS$

It can be written as

 \angle ABC > \angle ACB So we get AC > AB

Therefore, it is proved that AC > AB.

16. In the given figure, D is a point on side BC of a \triangle ABC and E is a point such that CD = DE. Prove that AB + AC > BE.

Solution:

Consider \triangle ABC We know that AB + AC > BC It can be written as AB + AC > BD + DC We know that CD = DE So we get AB + AC > BD + DE(1)

Consider \triangle BED We know that BD + DE > BE (2)

Considering both the equations we get AB + AC > BE.