

EXERCISE 3.1

PAGE NO: 3.4

- 1. Determine whether the following operation define a binary operation on the given set or not:
- (i) '*' on N defined by a * b = a^b for all a, b \in N.
- (ii) 'O' on Z defined by a O b = a^b for all a, b \in Z.
- (iii) '*' on N defined by a * b = a + b 2 for all a, b \in N
- (iv) \times_6 on S = {1, 2, 3, 4, 5} defined by a \times_6 b = Remainder when a b is divided by 6.
- (v) $'+_6'$ on S = {0, 1, 2, 3, 4, 5} defined by a $+_6$ b

$$= \begin{cases} a+b, & if \ a+b < 6 \\ a+b-6, & if \ a+b \ge 6 \end{cases}$$

- (vi) $'\odot'$ on N defined by a \odot b= $a^b + b^a$ for all a, b \in N
- (vii) '*' on Q defined by a * b = (a 1)/(b + 1) for all a, b \in Q

Solution:

- (i) Given '*' on N defined by a * b = a^b for all a, $b \in N$.
- Let a, $b \in N$. Then,
- $a^b \in N$ [: $a^b \neq 0$ and a, b is positive integer]
- \Rightarrow a * b \in N

Therefore,

- $a * b \in N, \forall a, b \in N$
- Thus, * is a binary operation on N.
- (ii) Given 'O' on Z defined by a O b = a^b for all a, b \in Z.

Both a = 3 and b = -1 belong to Z.

- \Rightarrow a * b = 3⁻¹
- = 1/3 ∉ Z

Thus, * is not a binary operation on Z.

- (iii) Given '*' on N defined by a * b = a + b 2 for all a, b \in N
- If a = 1 and b = 1,
- a * b = a + b 2
- = 1 + 1 2
- = 0 ∉ N

Thus, there exist a = 1 and b = 1 such that $a * b \notin N$

So, * is not a binary operation on N.

(iv) Given $'\times_6'$ on S = {1, 2, 3, 4, 5} defined by a \times_6 b = Remainder when a b is divided by 6. Consider the composition table,

X ₆	1	2	3	4	5
1	1	2	3	4	5
2	2	4	0	2	4
3	3	0	3	0	3
4	4	2	0	4	2
5	5	4	3	2	1

Here all the elements of the table are not in S.

 \Rightarrow For a = 2 and b = 3,

a \times_6 b = 2 \times_6 3 = remainder when 6 divided by 6 = 0 \neq S Thus, \times_6 is not a binary operation on S.

(v) Given $'+_6'$ on S = $\{0, 1, 2, 3, 4, 5\}$ defined by a $+_6$ b

$$= \begin{cases} a+b, & if \ a+b < 6 \\ a+b-6, & if \ a+b \ge 6 \end{cases}$$

Consider the composition table.

uci	der the composition table,						
+6	6	0	1	2	3	4	5
0		0	1	2	3	4	5
1		1	2	3	4	5	0
2		2	3	4	5	0	1
3		3	4	5	0	1	2
4		4	5	0	1	2	3
5		5	0	1	2	3	4

Here all the elements of the table are not in S.

$$\Rightarrow$$
 For a = 2 and b = 3,

a \times_6 b = 2 \times_6 3 = remainder when 6 divided by 6 = 0 \neq Thus, \times_6 is not a binary operation on S.

(vi) Given ' \odot ' on N defined by a \odot b= a^b + b^a for all a, b \in N Let a, b \in N. Then, a^b, b^a \in N \Rightarrow a^b + b^a \in N $[\because$ Addition is binary operation on N] \Rightarrow a \odot b \in N

Thus, \odot is a binary operation on N.

(vii) Given '*' on Q defined by a * b = (a - 1)/(b + 1) for all a, b \in Q If a = 2 and b = -1 in Q, a * b = (a - 1)/(b + 1) = (2 - 1)/(-1 + 1) = 1/0 [which is not defined] For a = 2 and b = -1 a * b does not belongs to Q So, * is not a binary operation in Q.

2. Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.

(i) On Z^+ , defined * by a * b = a - b

(ii) On Z^+ , define * by a*b = ab

(iii) On R, define * by a*b = ab2

(iv) On Z^+ define * by a * b = |a - b|

(v) On Z⁺ define * by a * b = a

(vi) On R, define * by a * b = $a + 4b^2$

Here, Z⁺ denotes the set of all non-negative integers.

Solution:

(i) Given On Z^+ , defined * by a * b = a - b If a = 1 and b = 2 in Z^+ , then a * b = a - b = 1 - 2 = -1 \notin Z⁺ [because Z⁺ is the set of non-negative integers] For a = 1 and b = 2, a * b \notin Z⁺

Thus, * is not a binary operation on Z⁺.

(ii) Given Z^+ , define * by a*b = a b

Let a, b $\in Z^+$

 \Rightarrow a, b \in Z⁺

 \Rightarrow a * b \in Z⁺

Thus, * is a binary operation on R.

(iii) Given on R, define by $a*b = ab^2$

Let a, $b \in R$

 \Rightarrow a, b² \in R

 \Rightarrow ab² \in R

 \Rightarrow a * b \in R

Thus, * is a binary operation on R.

(iv) Given on Z^+ define * by a * b = |a - b|

Let a, $b \in Z^+$

 \Rightarrow | a - b | \in Z⁺

 \Rightarrow a * b \in Z⁺

Therefore,

 $a * b \in Z^+, \forall a, b \in Z^+$

Thus, * is a binary operation on Z⁺.

(v) Given on Z^+ define * by a * b = a

Let a, b $\in Z^+$

 \Rightarrow a \in Z⁺

 \Rightarrow a * b \in Z⁺

Therefore, $a * b \in Z^+ \forall a, b \in Z^+$

Thus, * is a binary operation on Z⁺.

(vi) Given On R, define * by a * b = $a + 4b^2$

Let a, b ∈ R

 \Rightarrow a, $4b^2 \in R$

 \Rightarrow a + 4b² \in R

 \Rightarrow a * b \in R

Therefore, a *b \in R, \forall a, b \in R

Thus, * is a binary operation on R.

3. Let * be a binary operation on the set I of integers, defined by a * b = 2a + b - 3. Find the value of 3 * 4.

Solution:

Given
$$a * b = 2a + b - 3$$

 $3 * 4 = 2 (3) + 4 - 3$
 $= 6 + 4 - 3$
 $= 7$

4. Is * defined on the set {1, 2, 3, 4, 5} by a * b = LCM of a and b a binary operation? Justify your answer.

Solution:

LCM	1	2	3	4	5
1	1	2	3	4	5
2	2	2	6	4	10
3	3	5	3	12	15
4	4	4	12	4	20
5	5	10	15	20	5

In the given composition table, all the elements are not in the set $\{1, 2, 3, 4, 5\}$. If we consider a = 2 and b = 3, a * b = LCM of a and $b = 6 \notin \{1, 2, 3, 4, 5\}$. Thus, * is not a binary operation on $\{1, 2, 3, 4, 5\}$.

5. Let $S = \{a, b, c\}$. Find the total number of binary operations on S.

Solution:

Number of binary operations on a set with n elements is n^{n^2} Here, S = {a, b, c}

Number of elements in S = 3

Number of binary operations on a set with 3 elements is 3^{3^2}

EXERCISE 3.2

PAGE NO: 3.12

- 1. Let '*' be a binary operation on N defined by a * b = l.c.m. (a, b) for all a, b \in N
- (i) Find 2 * 4, 3 * 5, 1 * 6.
- (ii) Check the commutativity and associativity of '*' on N.

Solution:

- (i) Given a * b = 1.c.m. (a, b) 2 * 4 = l.c.m. (2, 4) = 4 3 * 5 = l.c.m. (3, 5) = 15 1 * 6 = l.c.m. (1, 6) = 6
- (ii) We have to prove commutativity of *

Let $a, b \in N$

a * b = l.c.m (a, b)

= l.c.m (b, a)

= b * a

Therefore

$$a * b = b * a \forall a, b \in N$$

Thus * is commutative on N.

Now we have to prove associativity of *

Let a, b, $c \in N$

a * (b * c) = a * l.c.m. (b, c)

= 1.c.m. (a, (b, c))

= l.c.m (a, b, c)

(a * b) * c = l.c.m. (a, b) * c

= l.c.m. ((a, b), c)

= l.c.m. (a, b, c)

Therefore

$$(a * (b * c) = (a * b) * c, \forall a, b, c \in N$$

Thus, * is associative on N.

2. Determine which of the following binary operation is associative and which is

commutative:

- (i) * on N defined by a * b = 1 for all a, $b \in N$
- (ii) * on Q defined by a * b = (a + b)/2 for all a, $b \in Q$

Solution:

(i) We have to prove commutativity of *

Let $a, b \in N$

$$a * b = 1$$

$$b * a = 1$$

Therefore,

$$a * b = b * a$$
, for all $a, b \in N$

Thus * is commutative on N.

Now we have to prove associativity of *

Let a, b, $c \in N$

Then
$$a * (b * c) = a * (1)$$

$$(a * b) *c = (1) * c$$

Therefore a * (b * c) = (a * b) *c for all a, b, $c \in N$

Thus, * is associative on N.

(ii) First we have to prove commutativity of *

Let $a, b \in N$

$$a * b = (a + b)/2$$

$$= (b + a)/2$$

$$= b * a$$

Therefore, a * b = b * a, $\forall a, b \in N$

Thus * is commutative on N.

Now we have to prove associativity of *

Let $a, b, c \in N$

$$a * (b * c) = a * (b + c)/2$$

$$= [a + (b + c)]/2$$

$$= (2a + b + c)/4$$

Now,
$$(a * b) * c = (a + b)/2 * c$$

$$= [(a + b)/2 + c]/2$$

$$= (a + b + 2c)/4$$

Thus,
$$a * (b * c) \neq (a * b) * c$$

Therefore, there exist a = 1, b = 2, $c = 3 \in N$ such that $a * (b * c) \neq (a * b) * c$ Thus, * is not associative on N.

3. Let A be any set containing more than one element. Let '*' be a binary operation on A defined by a * b = b for all a, b \in A is '*' commutative or associative on A?

Solution:

Therefore

Let $a, b \in A$ Then, a * b = b b * a = aTherefore $a * b \ne b * a$ Thus, * is not commutative on A Now we have to check associativity: Let $a, b, c \in A$ a * (b * c) = a * c= c

 $a * (b * c) = (a * b) * c, \forall a, b, c \in A$

Thus, * is associative on A

- 4. Check the commutativity and associativity of each of the following binary operations:
- (i) '*' on Z defined by a * b = a + b + a b for all a, b \in Z
- (ii) '*' on N defined by a * b = 2^{ab} for all a, b \in N
- (iii) '*' on Q defined by a * b = a b for all a, b \in Q
- (iv) 'O' on Q defined by a O $b = a^2 + b^2$ for all a, $b \in Q$
- (v) 'o' on Q defined by a o b = (ab/2) for all a, b \in Q
- (vi) '*' on Q defined by a * b = ab^2 for all a, b \in Q


```
(vii) '*' on Q defined by a * b = a + a b for all a, b \in Q (viii) '*' on R defined by a * b = a + b -7 for all a, b \in R (ix) '*' on Q defined by a * b = (a - b)^2 for all a, b \in Q (x) '*' on Q defined by a * b = a b + 1 for all a, b \in Q (xi) '*' on N defined by a * b = a<sup>b</sup> for all a, b \in N (xii) '*' on Z defined by a * b = a - b for all a, b \in Z (xiii) '*' on Q defined by a * b = (ab/4) for all a, b \in Q (xiv) '*' on Z defined by a * b = a + b - ab for all a, b \in Z (xv) '*' on Q defined by a * b = gcd (a, b) for all a, b \in Q
```

- (i) First we have to check commutativity of * Let a, $b \in Z$ Then a * b = a + b + ab= b + a + ba= b * aTherefore, $a * b = b * a, \forall a, b \in Z$ Now we have to prove associativity of Let a, b, $c \in Z$, Then, a * (b * c) = a * (b + c + b c)= a + (b + c + b c) + a (b + c + b c)= a + b + c + bc + ab + ac + abc(a * b) * c = (a + b + a b) * c= a + b + a b + c + (a + b + a b) c= a + b + ab + c + ac + bc + abcTherefore, $a * (b * c) = (a * b) * c, \forall a, b, c \in Z$ Thus, * is associative on Z.
- (ii) First we have to check commutativity of *
 Let a, b ∈ N
 a * b = 2^{ab}
 = 2^{ba}
 = b * a
 Therefore, a * b = b * a, ∀ a, b ∈ N
 Thus, * is commutative on N

Now we have to check associativity of *

Let a, b, $c \in N$

Then,
$$a * (b * c) = a * (2^{bc})$$

$$=2^{a*2^{bc}}$$

$$(a * b) * c = (2^{ab}) * c$$

$$=2^{ab*2^c}$$

Therefore,
$$a * (b * c) \neq (a * b) * c$$

Thus, * is not associative on N

Let $a, b \in Q$, then

$$a * b = a - b$$

$$b*a=b-a$$

Thus, * is not commutative on Q

Now we have to check associativity of *

Let a, b, $c \in Q$, then

$$a * (b * c) = a * (b - c)$$

$$= a - (b - c)$$

$$= a - b + c$$

$$(a * b) * c = (a - b) * c$$

$$= a - b - c$$

Therefore,

$$a * (b * c) \neq (a * b) * c$$

Thus, * is not associative on Q

(iv) First we have to check commutativity of ⊙

Let $a, b \in Q$, then

$$a \odot b = a^2 + b^2$$

$$= b^2 + a^2$$

Therefore, a
$$\bigcirc$$
 b = b \bigcirc a, \forall a, b \in Q

Now we have to check associativity of ⊙

Let a, b, $c \in Q$, then

$$a \odot (b \odot c) = a \odot (b^2 + c^2)$$

$$= a^2 + (b^2 + c^2)^2$$

=
$$a^2 + b^4 + c^4 + 2b^2c^2$$

(a \odot b) \odot c = $(a^2 + b^2)$ \odot c
= $(a^2 + b^2)^2 + c^2$
= $a^4 + b^4 + 2a^2b^2 + c^2$

Therefore,

 $(a \odot b) \odot c \neq a \odot (b \odot c)$

Thus, ⊙ is not associative on Q.

(v) First we have to check commutativity of o Let a, $b \in Q$, then

$$a \circ b = (ab/2)$$

$$= (b a/2)$$

$$= boa$$

Therefore, a o b = b o a, \forall a, b \in Q

Thus, o is commutative on Q

Now we have to check associativity of o

Let a, b, $c \in Q$, then

$$a \circ (b \circ c) = a \circ (b c/2)$$

$$= [a (b c/2)]/2$$

$$= [a (b c/2)]/2$$

$$= (a b c)/4$$

$$(a \circ b) \circ c = (ab/2) \circ c$$

$$= [(ab/2) c]/2$$

$$= (a b c)/4$$

Therefore a o (b o c) = (a o b) o c, \forall a, b, c \in Q

Thus, o is associative on Q.

(vi) First we have to check commutativity of *

$$a * b = ab^{2}$$

$$b * a = ba^2$$

Therefore,

Thus, * is not commutative on Q

Now we have to check associativity of *

Let a, b, $c \in Q$, then

$$a * (b * c) = a * (bc^2)$$

= a
$$(bc^2)^2$$

= ab² c⁴
(a * b) * c = (ab²) * c
= ab²c²
Therefore a * (b * c) \neq (a * b) * c
Thus, * is not associative on Q.

(vii) First we have to check commutativity of * Let a, $b \in Q$, then

$$a * b = a + ab$$

$$b * a = b + ba$$

$$= b + ab$$

Therefore, a * b ≠ b * a

Thus, * is not commutative on Q.

Now we have to prove associativity on Q.

Let a, b, $c \in Q$, then

$$a * (b * c) = a * (b + b c)$$

$$= a + a (b + b c)$$

$$= a + ab + abc$$

$$(a * b) * c = (a + a b) * c$$

$$= (a + a b) + (a + a b) c$$

$$= a + ab + ac + abc$$

Therefore $a * (b * c) \neq (a * b) * c$

Thus, * is not associative on Q.

(viii) First we have to check commutativity of *

Let a, $b \in R$, then

$$a * b = a + b - 7$$

$$= b + a - 7$$

Therefore,

$$a * b = b * a$$
, for all $a, b \in R$

Thus, * is commutative on R

Now we have to prove associativity of * on R.

Let a, b, $c \in R$, then

$$a * (b * c) = a * (b + c - 7)$$

$$= a + b + c - 7 - 7$$

=
$$a + b + c - 14$$

($a * b$) * $c = (a + b - 7) * c$
= $a + b - 7 + c - 7$
= $a + b + c - 14$
Therefore,
a * ($b * c$) = ($a * b$) * c , for all a , b , $c \in R$
Thus, * is associative on R .

(ix) First we have to check commutativity of * Let a, $b \in Q$, then $a * b = (a - b)^2$ $= (b - a)^2$ = b * a Therefore, a * b = b * a, for all $a, b \in Q$ Thus, * is commutative on Q Now we have to prove associativity of * on Q

Let a, b, $c \in Q$, then $a * (b * c) = a * (b - c)^2$ $= a * (b^2 + c^2 - 2 b c)$ $= (a - b^2 - c^2 + 2bc)^2$ $(a * b) * c = (a - b)^2 * c$ $= (a^2 + b^2 - 2ab) * c$ $= (a^2 + b^2 - 2ab - c)^2$ Therefore, $a * (b * c) \neq (a * b) * c$

Thus, * is not associative on Q.

(x) First we have to check commutativity of *

Let a,
$$b \in Q$$
, then
 $a * b = ab + 1$
 $= ba + 1$

= b * a

Therefore

a * b = b * a, for all $a, b \in Q$

Thus, * is commutative on Q

Now we have to prove associativity of $\mbox{*}$ on Q

Let a, b, $c \in Q$, then

$$a * (b * c) = a * (bc + 1)$$

= $a (b c + 1) + 1$
= $a b c + a + 1$
 $(a * b) * c = (ab + 1) * c$
= $(ab + 1) c + 1$
= $a b c + c + 1$
Therefore, $a * (b * c) \neq (a * b) * c$
Thus, * is not associative on Q.

(xi) First we have to check commutativity of *

Let
$$a, b \in N$$
, then

$$a * b = a^{b}$$

$$b * a = b^a$$

Now we have to check associativity of *

$$a * (b * c) = a * (b^c)$$

$$=a^{b^c}$$

$$(a * b) * c = (a^b) * c$$

$$= (a^b)^c$$

$$= a^{bc}$$

Therefore, $a * (b * c) \neq (a * b) * c$

(xii) First we have to check commutativity of *

Let
$$a, b \in Z$$
, then

$$a * b = a - b$$

$$b * a = b - a$$

Therefore,

Thus, * is not commutative on Z.

Now we have to check associativity of *

Let a, b,
$$c \in Z$$
, then

$$a * (b * c) = a * (b - c)$$

$$= a - (b - c)$$

$$= a - (b + c)$$

$$(a * b) * c = (a - b) - c$$

=
$$a - b - c$$

Therefore, $a * (b * c) \neq (a * b) * c$
Thus, * is not associative on Z
(xiii) First we have to check commutativity of *
Let $a, b \in Q$, then
 $a * b = (ab/4)$
= $(ba/4)$
= $b * a$
Therefore, $a * b = b * a$, for all $a, b \in Q$
Thus, * is commutative on Q
Now we have to check associativity of *
Let $a, b, c \in Q$, then
 $a * (b * c) = a * (b c/4)$
= $[a (b c/4)]/4$
= $(a b c/16)$
 $(a * b) * c = (ab/4) * c$
= $[(ab/4) c]/4$
= $a b c/16$
Therefore,
 $a * (b * c) = (a * b) * c$ for all $a, b, c \in Q$
Thus, * is associative on Q .

Let $a, b \in Z$, then a * b = a + b - ab = b + a - ba = b * aTherefore, a * b = b * a, for all $a, b \in Z$ Thus, * is commutative on Z. Now we have to check associativity of * Let $a, b, c \in Z$

(xiv) First we have to check commutativity of *


```
Therefore,
a * (b * c) = (a * b) * c, for all a, b, c \in Z
Thus, * is associative on Z.
(xv) First we have to check commutativity of *
Let a, b \in N, then
a * b = gcd(a, b)
= gcd (b, a)
= b * a
Therefore, a * b = b * a, for all a, b \in N
Thus, * is commutative on N.
Now we have to check associativity of *
Let a, b, c \in N
a * (b * c) = a * [gcd (a, b)]
= gcd (a, b, c)
(a * b) * c = [gcd (a, b)] * c
= \gcd(a, b, c)
Therefore,
a * (b * c) = (a * b) * c, for all a, b, c \in N
Thus, * is associative on N.
```

5. If the binary operation o is defined by a0b = a + b - ab on the set $Q - \{-1\}$ of all rational numbers other than 1, show that o is commutative on Q - [1].

Solution:

```
Let a, b \in Q - {-1}.

Then aob = a + b - ab

= b+ a - ba

= boa

Therefore,

aob = boa for all a, b \in Q - {-1}

Thus, o is commutative on Q - {-1}
```

6. Show that the binary operation * on Z defined by a * b = 3a + 7b is not commutative?

Therefore, there exist a = 1, $b = 2 \in Z$ such that $a * b \neq b * a$ Thus, * is not commutative on Z.

7. On the set Z of integers a binary operation * is defined by a 8 b = ab + 1 for all a, b ∈ Z. Prove that * is not associative on Z.

Let a, b,
$$c \in Z$$

a * (b * c) = a * (bc + 1)
= a (bc + 1) + 1
= a b c + a + 1
(a * b) * c = (ab + 1) * c
= (ab + 1) c + 1
= a b c + c + 1
Thus, a * (b * c) \neq (a * b) * c
Thus, * is not associative on Z.

EXERCISE 3.3

PAGE NO: 3.15

1. Find the identity element in the set I⁺ of all positive integers defined by a * b = a + b for all a, b \in I⁺.

Solution:

```
Let e be the identity element in I<sup>+</sup> with respect to * such that a * e = a = e * a, \forall a \in I^+ a * e = a and e * a = a, \forall a \in I^+ a + e = a and e + a = a, \forall a \in I^+ e = 0, \forall a \in I^+ Thus, 0 is the identity element in I<sup>+</sup> with respect to *.
```

2. Find the identity element in the set of all rational numbers except – 1 with respect to * defined by a * b = a + b + ab

```
Let e be the identity element in I<sup>+</sup> with respect to * such that a * e = a = e * a, \forall a \in Q – {-1} a * e = a and e * a = a, \forall a \in Q – {-1} a + e + ae = a and e + a + ea = a, \forall a \in Q – {-1} e + ae = 0 and e + ea = 0, \forall a \in Q – {-1} e (1 + a) = 0 and e (1 + a) = 0, \forall a \in Q – {-1} e = 0, \forall a \in Q – {-1} [because a not equal to -1] Thus, 0 is the identity element in Q – {-1} with respect to *.
```


EXERCISE 3.4

PAGE NO: 3.25

- 1. Let * be a binary operation on Z defined by a * b = a + b 4 for all a, $b \in Z$.
- (i) Show that * is both commutative and associative.
- (ii) Find the identity element in Z
- (iii) Find the invertible element in Z.

Solution:

(i) First we have to prove commutativity of *

Let
$$a, b \in Z$$
. then,

$$a * b = a + b - 4$$

$$= b + a - 4$$

$$= b * a$$

Therefore,

$$a * b = b * a, \forall a, b \in Z$$

Thus, * is commutative on Z.

Now we have to prove associativity of Z.

Let a, b,
$$c \in Z$$
. then,

$$a * (b * c) = a * (b + c - 4)$$

$$= a + b + c - 4 - 4$$

$$= a + b + c - 8$$

$$(a * b) * c = (a + b - 4) * c$$

$$= a + b - 4 + c - 4$$

$$= a + b + c - 8$$

Therefore,

$$a * (b * c) = (a * b) * c$$
, for all a, b, $c \in Z$

Thus, * is associative on Z.

(ii) Let e be the identity element in Z with respect to * such that

$$a * e = a = e * a \forall a \in Z$$

$$a * e = a$$
 and $e * a = a$, $\forall a \in Z$

$$a + e - 4 = a$$
 and $e + a - 4 = a$, $\forall a \in Z$

$$e = 4, \forall a \in Z$$

Thus, 4 is the identity element in Z with respect to *.

(iii) Let $a \in Z$ and $b \in Z$ be the inverse of a. Then,


```
a * b = e = b * a
a * b = e \text{ and } b * a = e
a + b - 4 = 4 \text{ and } b + a - 4 = 4
b = 8 - a \in Z
Thus, 8 - a is the inverse of a \in Z
```

2. Let * be a binary operation on Q_0 (set of non-zero rational numbers) defined by a * b = (3ab/5) for all a, b \in Q_0 . Show that * is commutative as well as associative. Also, find its identity element, if it exists.

Solution:

```
First we have to prove commutativity of *
Let a, b \in Q<sub>0</sub>
a * b = (3ab/5)
= (3ba/5)
= b * a
Therefore, a * b = b * a, for all a, b \in Q<sub>0</sub>
Now we have to prove associativity of *
Let a, b, c \in Q_0
a * (b * c) = a * (3bc/5)
= [a (3 bc/5)]/5
= 3 abc/25
(a * b) * c = (3 ab/5) * c
= [(3 ab/5) c]/5
= 3 abc / 25
Therefore a * (b * c) = (a * b) * c, for all a, b, c \in Q_0
Thus * is associative on Q<sub>0</sub>
Now we have to find the identity element
Let e be the identity element in Z with respect to * such that
a * e = a = e * a \forall a \in Q_0
a * e = a and e * a = a, \forall a \in Q_0
3ae/5 = a and 3ea/5 = a, \forall a \in Q_0
e = 5/3 \forall a \in Q_0 [because a is not equal to 0]
Thus, 5/3 is the identity element in Q_0 with respect to *.
```

3. Let * be a binary operation on $Q - \{-1\}$ defined by a * b = a + b + ab for all a, b $\in Q - \{-1\}$. Then,

- (i) Show that * is both commutative and associative on $Q \{-1\}$
- (ii) Find the identity element in $Q \{-1\}$
- (iii) Show that every element of Q {-1} is invertible. Also, find inverse of an arbitrary element.

```
Solution:
(i) First we have to check commutativity of *
Let a, b \in Q -\{-1\}
Then a * b = a + b + ab
= b + a + ba
= b * a
Therefore,
a * b = b * a, \forall a, b \in Q - \{-1\}
Now we have to prove associativity of *
Let a, b, c \in Q - \{-1\}, Then,
a * (b * c) = a * (b + c + b c)
= a + (b + c + b c) + a (b + c + b c)
```

Therefore.

$$a * (b * c) = (a * b) * c, \forall a, b, c \in Q - \{-1\}$$

Thus, * is associative on $Q - \{-1\}$.

(ii) Let e be the identity element in I⁺ with respect to * such that $a * e = a = e * a, \forall a \in Q - \{-1\}$

$$a * e = a = e * a, \forall a \in Q - \{-1\}$$

 $a * e = a \text{ and } e * a = a, \forall a \in Q - \{-1\}$
 $a + e + ae = a \text{ and } e + a + ea = a, \forall a \in Q - \{-1\}$
 $e + ae = 0 \text{ and } e + ea = 0, \forall a \in Q - \{-1\}$
 $e (1 + a) = 0 \text{ and } e (1 + a) = 0, \forall a \in Q - \{-1\}$

e = 0, $\forall a \in Q - \{-1\}$ [because a not equal to -1] Thus, 0 is the identity element in $Q - \{-1\}$ with respect to *.

(iii) Let $a \in Q - \{-1\}$ and $b \in Q - \{-1\}$ be the inverse of a. Then, a * b = e = b * aa * b = e and b * a = e


```
a + b + ab = 0 and b + a + ba = 0

b (1 + a) = -a Q - \{-1\}

b = -a/1 + a Q - \{-1\} [because a not equal to -1]

Thus, -a/1 + a is the inverse of a \in Q - \{-1\}
```

- 4. Let $A = R_0 \times R$, where R_0 denote the set of all non-zero real numbers. A binary operation 'O' is defined on A as follows: (a, b) O (c, d) = (ac, bc + d) for all (a, b), (c, d) $\in R_0 \times R$.
- (i) Show that 'O' is commutative and associative on A
- (ii) Find the identity element in A
- (iii) Find the invertible element in A.

Solution:

```
(i) Let X = (a, b) and Y = (c, d) \in A, \forall a, c \in R_0 and b, d \in R
Then, X \cap Y = (ac, bc + d)
And Y \cap X = (ca, da + b)
Therefore,
X \cap Y = Y \cap X, \forall X, Y \in A
Thus, O commutative on A.
Now we have to check associativity of O
Let X = (a, b), Y = (c, d) and Z = (e, f), \forall a, c, e \in R_0 and b, d, f \in R
X \cap (Y \cap Z) = (a, b) \cap (ce, de + f)
= (ace, bce + de + f)
(X \cap Y) \cap Z = (ac, bc + d) \cap (e, f)
= (ace, bce + de + f)
Therefore, X \cap (Y \cap Z) = (X \cap Y) \cap (Z, \forall X, Y, Z \in A)
```

(ii) Let E = (x, y) be the identity element in A with respect to $O, \forall x \in R_0$ and $y \in R$ Such that,

```
X O E = X = E O X, \forall X \in A

X O E = X and EOX = X

(ax, bx +y) = (a, b) and (xa, ya + b) = (a, b)

Considering (ax, bx + y) = (a, b)

ax = a

x = 1

And bx + y = b
```



```
y = 0 [since x = 1]
Considering (xa, ya + b) = (a, b)
xa = a
x = 1
And ya + b = b
y = 0 [since x = 1]
Therefore (1, 0) is the identity element in A with respect to O.
(iii) Let F = (m, n) be the inverse in A \forall m \in R_0 and n \in R
X O F = E  and F O X = E
(am, bm + n) = (1, 0) and (ma, na + b) = (1, 0)
Considering (am, bm + n) = (1, 0)
am = 1
m = 1/a
And bm + n = 0
n = -b/a [since m = 1/a]
Considering (ma, na + b) = (1, 0)
ma = 1
m = 1/a
And na + b = 0
n = -b/a
Therefore the inverse of (a, b) \in A with respect to O is (1/a, -1/a)
```


EXERCISE 3.5

PAGE NO: 3.33

1. Construct the composition table for \times_4 on set $S = \{0, 1, 2, 3\}$.

Solution:

Given that \times_4 on set $S = \{0, 1, 2, 3\}$

Here

 $1 \times_4 1$ = remainder obtained by dividing 1×1 by 4

= 1

 $0 \times_4 1$ = remainder obtained by dividing 0×1 by 4

= 0

 $2 \times_4 3$ = remainder obtained by dividing 2×3 by 4

= 2

 $3 \times_4 3$ = remainder obtained by dividing 3×3 by 4

= 1

So, the composition table is as follows:

× ₄	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	2	2
3	0	3	2	1

2. Construct the composition table for $+_5$ on set $S = \{0, 1, 2, 3, 4\}$

Solution:

 $1 +_5 1 = remainder obtained by dividing 1 + 1 by 5$

= 2

 $3 +_5 1 =$ remainder obtained by dividing 3 + 1 by 5

- 2

 $4 +_5 1$ = remainder obtained by dividing 4 + 1 by 5

= 3

So, the composition table is as follows:

+5	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

3. Construct the composition table for \times_6 on set $S = \{0, 1, 2, 3, 4, 5\}$.

Solution:

Here,

 $1 \times_6 1$ = remainder obtained by dividing 1×1 by 6

= 1

 $3 \times_6 4$ = remainder obtained by dividing 3×4 by 6

= 0

 $4 \times_6 5$ = remainder obtained by dividing 4×5 by 6

= 2

So, the composition table is as follows:

× ₆	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

4. Construct the composition table for x_5 on set $Z_5 = \{0, 1, 2, 3, 4\}$

Solution:

Here,

 $1 \times_5 1$ = remainder obtained by dividing 1×1 by 5

= 1

 $3 \times_5 4$ = remainder obtained by dividing 3×4 by 5

= 2

 $4 \times_5 4$ = remainder obtained by dividing 4×4 by 5

= 1

So, the composition table is as follows:

-	composition table is as follows.						
	x ₅	0	1	2	3	4	
	0	0	0	0	0	0	
	1	0	1	2	3	4	
	2	0	2	4	1	3	
	3	0	3	1	4	2	
	4	0	4	3	2	1	

5. For the binary operation \times_{10} set S = {1, 3, 7, 9}, find the inverse of 3.

Solution:

Here,

 $1 \times_{10} 1$ = remainder obtained by dividing 1×1 by 10

= 1

 $3 \times_{10} 7 = \text{remainder obtained by dividing } 3 \times 7 \text{ by } 10$

= 1

 $7 \times_{10} 9$ = remainder obtained by dividing 7×9 by 10

= 3

So, the composition table is as follows:

× ₁₀	1	3	7	9
1	1	3	7	9
3	3	9	1	7
7	7	1	9	3
9	9	7	3	1

From the table we can observe that elements of first row as same as the top-most row.

So, $1 \in S$ is the identity element with respect to \times_{10}

Now we have to find inverse of 3

 $3 \times_{10} 7 = 1$

So the inverse of 3 is 7.