

EXERCISE 15.1

PAGE NO: 15.9

1. Discuss the applicability of Rolle's Theorem for the following functions on the indicated intervals:

(i)
$$f(x) = 3 + (x-2)^{\frac{2}{3}}$$
 on [1,3]

Solution:

Given function is

$$\Rightarrow$$
 f(x) = 3 + (x-2)²/₂ on [1, 3]

Let us check the differentiability of the function f(x).

Now we have to find the derivative of f(x),

$$\Rightarrow f'(x) = \frac{d}{dx} \left(3 + (x-2)^{\frac{2}{3}} \right)$$

$$\Rightarrow f'(x) = \frac{d(3)}{dx} + \frac{d\left((x-2)^{\frac{2}{3}}\right)}{dx}$$

$$\Rightarrow f'(x) = 0 + \frac{2}{3}(x-2)^{\frac{2}{3}-1}$$

$$\Rightarrow f'(x) = \frac{2}{3}(x-2)^{-\frac{1}{3}}$$

$$f'(x) = \frac{2}{3(x-2)^{\frac{1}{3}}}$$

Now we have to check differentiability at the value of x = 2

$$\lim_{x \to 2} f'(x) = \lim_{x \to 2} \frac{2}{3(x-2)^{\frac{1}{3}}}$$

$$\lim_{x \to 2} f'(x) = \frac{2}{3(2-2)^{\frac{1}{2}}}$$

$$\lim_{x\to 2} f'(x) = \frac{2}{3(0)}$$

$$\lim_{x\to 2} f'(x) = \text{undefined}$$

 \therefore f is not differentiable at x = 2, so it is not differentiable in the closed interval (1, 3).

So, Rolle's theorem is not applicable for the function f on the interval [1, 3].

(ii) f(x) = [x] for $-1 < x \le 1$, where [x] denotes the greatest integer not exceeding x

Solution:

Given function is f(x) = [x], $-1 \le x \le 1$ where [x] denotes the greatest integer not exceeding x.

Let us check the continuity of the function f.

Here in the interval $x \in [-1, 1]$, the function has to be Right continuous at x = 1 and left continuous at x = 1.

$$\lim_{\Rightarrow x \to 1+} f(x) = \lim_{x \to 1+} [x]$$

$$\lim_{\Rightarrow x \to 1+} f(x) = \lim_{x \to 1+} [x] \text{ Where h>0.}$$

$$\lim_{\Rightarrow x \to 1+} f(x) = \lim_{h \to 0} 1$$

$$\lim_{\Rightarrow x \to 1+} f(x) = 1 \dots (1)$$

$$\lim_{\Rightarrow x \to 1-} f(x) = \lim_{x \to 1-} [x]$$

$$\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-h} [x], \text{ where h>0}$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} 0$$

$$\lim_{x\to 1^-} f(x) = 0 \dots (2)$$

From (1) and (2), we can see that the limits are not the same so, the function is not continuous in the interval [-1, 1].

: Rolle's Theorem is not applicable for the function f in the interval [-1, 1].

(iii)
$$f(x) = \sin \frac{1}{x}$$
 for $-1 \le x \le 1$

Solution:

Given function is
$$f(x) = \sin(\frac{1}{x})$$
 for $-1 \le x \le 1$

Let us check the continuity of the function 'f' at the value of x = 0. We cannot directly find the value of limit at x = 0, as the function is not valid at x = 0. So, we take the limit on either sides or x = 0, and we check whether they are equal or not.

So consider RHL:

$$\lim_{x \to 0+} f(x) = \lim_{x \to 0+} \sin\left(\frac{1}{x}\right)$$

We assume that the limit $\lim_{h\to 0} \sin\left(\frac{1}{h}\right) = k$, $k \in [-1, 1]$.

$$\lim_{x\to 0+} f(x) = \lim_{x\to 0+h} \sin\left(\frac{1}{x}\right), \text{ where } h>0$$

$$\lim_{x\to 0+} f(x) = \lim_{h\to 0} \sin\left(\frac{1}{h+0}\right)$$

$$\lim_{x\to 0+} f(x) = \lim_{h\to 0} \sin\left(\frac{1}{h}\right)$$

$$\lim_{x\to 0+} f(x) = k \dots (1)$$

Now consider LHL:

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \sin\left(\frac{1}{x}\right)$$

$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} \sin\left(\frac{1}{x}\right), \text{ where h>0}$$

$$\lim_{x\to 0^-} f(x) = \lim_{h\to 0} \sin\left(\frac{1}{0-h}\right)$$

$$\lim_{x\to 0^-} f(x) = \lim_{h\to 0} \sin\left(\frac{1}{-h}\right)$$

$$\lim_{x\to 0^-} f(x) \,=\, \lim_{h\to 0} -\sin\left(\tfrac{1}{h}\right)$$

$$\lim_{x \to 0^{-}} f(x) = -\lim_{h \to 0} \sin\left(\frac{1}{h}\right)$$

$$\lim_{x \to 0^{-}} f(x) = -k \dots (2)$$

From (1) and (2), we can see that the Right hand and left – hand limits are not equal, so the function 'f' is not continuous at x = 0.

: Rolle's Theorem is not applicable to the function 'f' in the interval [-1, 1].

(iv)
$$f(x) = 2x^2 - 5x + 3$$
 on [1, 3]

Solution:

Given function is $f(x) = 2x^2 - 5x + 3$ on [1, 3]

Since given function f is a polynomial. So, it is continuous and differentiable everywhere. Now, we find the values of function at the extreme values.

$$\Rightarrow$$
 f (1) = 2(1)²-5(1) + 3

$$\Rightarrow$$
 f(1) = 2 - 5 + 3

$$\Rightarrow$$
 f (1) = 0..... (1)

$$\Rightarrow$$
 f (3) = 2(3)²-5(3) + 3

$$\Rightarrow$$
 f (3) = 2(9)–15 + 3

$$\Rightarrow$$
 f (3) = 18 $-$ 12

$$\Rightarrow$$
 f (3) = 6..... (2)

From (1) and (2), we can say that, $f(1) \neq f(3)$

∴ Rolle's Theorem is not applicable for the function f in interval [1, 3].

(v) f (x) =
$$x^{2/3}$$
 on [-1, 1]

Solution:

Given function is
$$f(x) = x^{\frac{1}{2}}$$
 on $[-1, 1]$

Now we have to find the derivative of the given function:

$$\Rightarrow f'(x) = \frac{d\left(\frac{2}{x^3}\right)}{dx}$$

$$\Rightarrow f'(x) = \frac{2}{3}x^{\frac{2}{3}-1}$$

$$\Rightarrow f'(x) = \frac{2}{3}x^{-\frac{1}{3}}$$

$$\Rightarrow f'(x) = \frac{2}{3x^3}$$

Now we have to check the differentiability of the function at x = 0.

$$\lim_{x\to 0} f'(x) = \lim_{x\to 0} \frac{2}{3x^{\frac{1}{2}}}$$

$$\lim_{x\to 0} f'(x) = \frac{2}{3(0)^{\frac{1}{3}}}$$

$$\lim_{x \to 0} f'(x) = undefined$$

Since the limit for the derivative is undefined at x = 0, we can say that f is not differentiable at x = 0.

∴ Rolle's Theorem is not applicable to the function 'f' on [-1, 1].

(vi)
$$f(x) = \begin{cases} -4x + 5, & 0 \le x \le 1 \\ 2x - 3, & 1 < x \le 2 \end{cases}$$

Solution:

Given function is
$$f(x) = \begin{cases} -4x + 5, 0 \le x \le 1\\ 2x - 3, 1 < x \le 2 \end{cases}$$

Now we have to check the continuity at x = 1 as the equation of function changes.

Consider LHL:

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} -4x + 5$$

$$\lim_{x \to 1^{-}} f(x) = -4(1) + 5$$

$$\Rightarrow \lim_{x \to 1^{-}} f(x) = 1 \dots (1)$$

Now consider RHL:

$$\lim_{x \to 1+} f(x) = \lim_{x \to 1+} 2x - 3$$

$$\lim_{x \to 1+} f(x) = 2(0) - 3$$

$$\lim_{x \to 1+} f(x) = -1 \dots (2)$$

From (1) and (2), we can see that the values of both side limits are not equal. So, the function 'f' is not continuous at x = 1.

: Rolle's Theorem is not applicable to the function 'f' in the interval [0, 2].

2. Verify the Rolle's Theorem for each of the following functions on the indicated intervals:

(i)
$$f(x) = x^2 - 8x + 12$$
 on [2, 6]

Solution:

Given function is $f(x) = x^2 - 8x + 12$ on [2, 6]

Since, given function f is a polynomial it is continuous and differentiable everywhere i.e., on R.

Let us find the values at extremes:

$$\Rightarrow$$
 f (2) = $2^2 - 8(2) + 12$

$$\Rightarrow$$
 f (2) = 4 - 16 + 12

$$\Rightarrow$$
 f (2) = 0

$$\Rightarrow$$
 f (6) = $6^2 - 8(6) + 12$

$$\Rightarrow$$
 f (6) = 36 - 48 + 12

$$\Rightarrow$$
 f (6) = 0

 \therefore f (2) = f(6), Rolle's theorem applicable for function f on [2,6].

Now we have to find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d(x^2 - 8x + 12)}{dx}$$

$$\Rightarrow f'(x) = \frac{d(x^2)}{dx} - \frac{d(8x)}{dx} + \frac{d(12)}{dx}$$

$$\Rightarrow f'(x) = 2x - 8 + 0$$

$$\Rightarrow$$
 f'(x) = 2x - 8

We have $f'(c) = 0 \in [2, 6]$, from the above definition

$$\Rightarrow$$
 f'(c) = 0

$$\Rightarrow$$
 2c $-8 = 0$

$$\Rightarrow$$
 2c = 8

$$\Rightarrow c = \frac{8}{2}$$

$$\Rightarrow$$
 C = 4 \in [2, 6]

∴ Rolle's Theorem is verified.

(ii)
$$f(x) = x^2 - 4x + 3$$
 on [1, 3]

Solution:

Given function is $f(x) = x^2 - 4x + 3$ on [1, 3]

Since, given function f is a polynomial it is continuous and differentiable everywhere i.e., on R. Let us find the values at extremes:

$$\Rightarrow$$
 f (1) = $1^2 - 4(1) + 3$

$$\Rightarrow$$
 f (1) = 1 - 4 + 3

$$\Rightarrow$$
 f (1) = 0

$$\Rightarrow$$
 f (3) = $3^2 - 4(3) + 3$

$$\Rightarrow$$
 f (3) = 9 - 12 + 3

$$\Rightarrow$$
 f (3) = 0

 \therefore f (1) = f(3), Rolle's theorem applicable for function 'f' on [1,3].

Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d(x^2 - 4x + 3)}{dx}$$

$$\Rightarrow f'(x) = \frac{d(x^2)}{dx} - \frac{d(4x)}{dx} + \frac{d(3)}{dx}$$

$$\Rightarrow f'(x) = 2x - 4 + 0$$

$$\Rightarrow$$
 f'(x) = 2x - 4

We have f'(c) = 0, $c \in (1, 3)$, from the definition of Rolle's Theorem.

$$\Rightarrow$$
 f'(c) = 0

$$\Rightarrow$$
 2c - 4 = 0

$$\Rightarrow$$
 2c = 4

$$\Rightarrow$$
 c = 4/2

$$\Rightarrow$$
 C = 2 \in (1, 3)

: Rolle's Theorem is verified.

(iii)
$$f(x) = (x-1)(x-2)^2$$
 on [1, 2]

Solution:

Given function is $f(x) = (x - 1) (x - 2)^2$ on [1, 2]

Since, given function f is a polynomial it is continuous and differentiable everywhere that is on R.

Let us find the values at extremes:

$$\Rightarrow$$
 f (1) = (1 - 1) (1 - 2)²

$$\Rightarrow$$
 f (1) = 0(1)²

$$\Rightarrow$$
 f (1) = 0

$$\Rightarrow$$
 f (2) = $(2-1)(2-2)^2$

$$\Rightarrow$$
 f (2) = 0^2

$$\Rightarrow$$
 f (2) = 0

 \therefore f (1) = f (2), Rolle's Theorem applicable for function 'f' on [1, 2].

Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d((x-1)(x-2)^2)}{dx}$$

Differentiating by using product rule, we get

$$\Rightarrow f'(x) = (x-2)^2 \times \frac{d(x-1)}{dx} + (x-1) \times \frac{d((x-2)^2)}{dx}$$

$$\Rightarrow$$
 f'(x) = ((x-2)²×1) + ((x-1) × 2 × (x-2))

$$\Rightarrow$$
 f'(x) = x² - 4x + 4 + 2(x² - 3x + 2)

$$\Rightarrow$$
 f'(x) = 3x² - 10x + 8

We have f'(c) = 0 $c \in (1, 2)$, from the definition of Rolle's Theorem.

$$\Rightarrow f'(c) = 0$$

$$\Rightarrow$$
 3c² - 10c + 8 = 0

$$\Rightarrow c = \frac{10 \pm \sqrt{(-10)^2 - (4 \times 3 \times 8)}}{2 \times 3}$$

$$\Rightarrow C = \frac{10 \pm \sqrt{100 - 96}}{6}$$

$$\Rightarrow c = \frac{10\pm 2}{6}$$

$$\Rightarrow$$
 c = $\frac{12}{6}$ or c = $\frac{8}{6}$

$$\Rightarrow$$
 c = $\frac{4}{3}$ \in (1, 2) (neglecting the value 2)

∴ Rolle's Theorem is verified.

(iv)
$$f(x) = x(x-1)^2$$
 on $[0, 1]$

Solution:

Given function is $f(x) = x(x-1)^2$ on [0, 1]

Since, given function f is a polynomial it is continuous and differentiable everywhere that is, on R.

Let us find the values at extremes

$$\Rightarrow$$
 f (0) = 0 (0 - 1)²

$$\Rightarrow$$
 f (0) = 0

$$\Rightarrow$$
 f (1) = 1 (1 - 1)²

$$\Rightarrow$$
 f (1) = 0^2

$$\Rightarrow$$
 f (1) = 0

 \therefore f (0) = f (1), Rolle's theorem applicable for function 'f' on [0,1].

Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d(x(x-1)^2)}{dx}$$

Differentiating using product rule:

$$\Rightarrow f'(x) = (x-1)^2 \times \frac{d(x)}{dx} + x \frac{d((x-1)^2)}{dx}$$

$$\Rightarrow$$
 f'(x) = ((x - 1)²×1) + (x×2×(x - 1))

$$\Rightarrow$$
 f'(x) = (x - 1)² + 2(x² - x)

$$\Rightarrow$$
 f'(x) = x² - 2x + 1 + 2x² - 2x

$$\Rightarrow$$
 f'(x) = 3x² - 4x + 1

We have f'(c) = 0 $c \in (0, 1)$, from the definition given above.

$$\Rightarrow$$
 f'(c) = 0

$$\Rightarrow 3c^2 - 4c + 1 = 0$$

$$\Rightarrow C = \frac{4 \pm \sqrt{(-4)^2 - (4 \times 3 \times 1)}}{2 \times 3}$$

$$\Rightarrow c = \frac{4 \pm \sqrt{16 - 12}}{6}$$

$$\Rightarrow c = \frac{4 \pm \sqrt{4}}{6}$$

$$\Rightarrow$$
 c = $\frac{6}{6}$ or c = $\frac{2}{6}$

$$\Rightarrow^{C} = \frac{1}{3} \in (0, 1)$$

: Rolle's Theorem is verified.

(v)
$$f(x) = (x^2 - 1)(x - 2)$$
 on [-1, 2]

Solution:

Given function is $f(x) = (x^2 - 1)(x - 2)$ on [-1, 2]

Since, given function f is a polynomial it is continuous and differentiable everywhere that is on R.

Let us find the values at extremes:

$$\Rightarrow$$
 f (-1) = ((-1)² - 1)(-1-2)

$$\Rightarrow$$
 f $(-1) = (1-1)(-3)$

$$\Rightarrow$$
 f (-1) = (0)(-3)

$$\Rightarrow$$
 f $(-1) = 0$

$$\Rightarrow$$
 f (2) = $(2^2 - 1)(2 - 2)$

$$\Rightarrow$$
 f (2) = (4 - 1)(0)

$$\Rightarrow$$
 f (2) = 0

 \therefore f (-1) = f (2), Rolle's theorem applicable for function f on [-1,2]. Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d((x^2-1)(x-2))}{dx}$$

Differentiating using product rule,

$$\Rightarrow f'(x) = (x-2) \times \frac{d(x^2-1)}{dx} + (x^2-1) \frac{d(x-2)}{dx}$$

$$\Rightarrow$$
 f'(x) = ((x - 2) × 2x) + ((x² - 1) × 1)

$$\Rightarrow$$
 f'(x) = 2x² - 4x + x² - 1

$$\Rightarrow$$
 f'(x) = 2x² - 4x - 1

We have f'(c) = 0 $c \in (-1, 2)$, from the definition of Rolle's Theorem.

$$\Rightarrow$$
 f'(c) = 0

$$\Rightarrow$$
 2c² - 4c - 1 = 0

$$\Rightarrow c = \frac{4 \pm \sqrt{(-4)^2 - (4 \times 2 \times -1)}}{2 \times 2}$$

$$\Rightarrow C = \frac{4 \pm \sqrt{16 + 8}}{4}$$

$$\Rightarrow c = \frac{4 \pm \sqrt{24}}{4}$$

$$\Rightarrow c = \frac{4 + 2\sqrt{6}}{4} \text{ or } c = \frac{4 - 2\sqrt{6}}{4}$$

$$\Rightarrow c = 1 + \frac{\sqrt{6}}{2} \text{ or } c = 1 - \frac{\sqrt{6}}{2}$$

$$\Rightarrow c = 1 - \frac{\sqrt{6}}{2} \in (-1, 2)$$

: Rolle's Theorem is verified.

(vi)
$$f(x) = x(x-4)^2$$
 on $[0, 4]$

Solution:

Given function is $f(x) = x(x-4)^2$ on [0, 4]

Since, given function f is a polynomial it is continuous and differentiable everywhere i.e., on R.

Let us find the values at extremes:

$$\Rightarrow f(0) = 0(0-4)^2$$

$$\Rightarrow$$
 f (0) = 0

$$\Rightarrow$$
 f (4) = 4(4 - 4)²

$$\Rightarrow$$
 f (4) = 4(0)²

$$\Rightarrow$$
 f (4) = 0

 \therefore f (0) = f (4), Rolle's theorem applicable for function 'f' on [0,4]. Let's find the derivative of f(x):

$$\Rightarrow f'(x) = \frac{d(x(x-4)^2)}{dx}$$

Differentiating using product rule

$$\Rightarrow f'(x) = (x-4)^2 \times \frac{d(x)}{dx} + x \frac{d((x-4)^2)}{dx}$$

$$\Rightarrow$$
 f'(x) = ((x - 4)²×1) + (x×2×(x - 4))

$$\Rightarrow$$
 f'(x) = (x - 4)² + 2(x² - 4x)

$$\Rightarrow$$
 f'(x) = x² - 8x + 16 + 2x² - 8x

$$\Rightarrow$$
 f'(x) = 3x² - 16x + 16

We have f'(c) = 0 $c \in (0, 4)$, from the definition of Rolle's Theorem.

$$\Rightarrow$$
 f'(c) = 0

$$\Rightarrow$$
 3c² - 16c + 16 = 0

$$\Rightarrow c = \frac{16 \pm \sqrt{(-16)^2 - (4 \times 3 \times 16)}}{2 \times 3}$$

$$\Rightarrow c = \frac{16 \pm \sqrt{256 - 192}}{6}$$

$$\Rightarrow c = \frac{16 \pm \sqrt{64}}{6}$$

$$\Rightarrow c = \frac{8}{6} \text{ or } c = \frac{24}{6}$$

$$\Rightarrow^{\mathsf{C}} = \frac{8}{6} \in (0, 4)$$

: Rolle's Theorem is verified.

(vii) $f(x) = x(x-2)^2$ on [0, 2]

Solution:

Given function is $f(x) = x(x-2)^2$ on [0, 2]

Since, given function f is a polynomial it is continuous and differentiable everywhere that is on R.

Let us find the values at extremes:

$$\Rightarrow$$
 f (0) = 0(0 - 2)²

$$\Rightarrow$$
 f (0) = 0

$$\Rightarrow$$
 f (2) = 2(2 - 2)²

$$\Rightarrow$$
 f (2) = 2(0)²

$$\Rightarrow$$
 f (2) = 0

f(0) = f(2), Rolle's theorem applicable for function f on [0,2].

Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d(x(x-2)^2)}{dx}$$

Differentiating using UV rule,

$$\Rightarrow f'(x) = (x-2)^2 \times \frac{d(x)}{dx} + x \frac{d((x-2)^2)}{dx}$$

$$\Rightarrow$$
 f'(x) = ((x - 2)²×1) + (x×2×(x - 2))

$$\Rightarrow$$
 f'(x) = (x - 2)² + 2(x² - 2x)

$$\Rightarrow$$
 f'(x) = x² - 4x + 4 + 2x² - 4x

$$\Rightarrow f'(x) = 3x^2 - 8x + 4$$

We have f'(c) = 0 $c \in (0, 1)$, from the definition of Rolle's Theorem.

$$\Rightarrow$$
 f'(c) = 0

$$\Rightarrow 3c^2 - 8c + 4 = 0$$

$$\Rightarrow c = \frac{8 \pm \sqrt{(-8)^2 - (4 \times 3 \times 4)}}{2 \times 3}$$

$$\Rightarrow c = \frac{8 \pm \sqrt{64 - 48}}{6}$$

$$\Rightarrow c = \frac{8 \pm \sqrt{16}}{6}$$

$$\Rightarrow$$
 c = $\frac{12}{6}$ or c = $\frac{6}{6}$

$$\Rightarrow$$
 c = 1 \in (0, 2)

: Rolle's Theorem is verified.

(viii)
$$f(x) = x^2 + 5x + 6$$
 on $[-3, -2]$

Solution:

Given function is $f(x) = x^2 + 5x + 6$ on [-3, -2]

Since, given function f is a polynomial it is continuous and differentiable everywhere i.e., on R. Let us find the values at extremes:

$$\Rightarrow$$
 f (-3) = (-3)² + 5(-3) + 6

$$\Rightarrow$$
 f (-3) = 9 - 15 + 6

$$\Rightarrow$$
 f ($-$ 3) = 0

$$\Rightarrow$$
 f (-2) = (-2)² + 5(-2) + 6

$$\Rightarrow$$
 f (-2) = 4 - 10 + 6

$$\Rightarrow$$
 f $(-2) = 0$

 \therefore f (-3) = f(-2), Rolle's theorem applicable for function f on [-3, -2].

Let's find the derivative of f(x):

$$\Rightarrow f'(x) = \frac{d(x^2 + 5x + 6)}{dx}$$

$$\Rightarrow f'(x) = \frac{d(x^2)}{dx} + \frac{d(5x)}{dx} + \frac{d(6)}{dx}$$

$$\Rightarrow f'(x) = 2x + 5 + 0$$

$$\Rightarrow$$
 f'(x) = 2x + 5

We have f'(c) = 0 c ϵ (-3, -2), from the definition of Rolle's Theorem

$$\Rightarrow$$
 f'(c) = 0

$$\Rightarrow$$
 2c + 5 = 0

$$\Rightarrow$$
 2c = -5

$$\Rightarrow$$
 c = $-\frac{5}{2}$

$$\Rightarrow$$
 C = $-2.5 \in (-3, -2)$

: Rolle's Theorem is verified.

3. Verify the Rolle's Theorem for each of the following functions on the indicated intervals:

(i) f (x) =
$$\cos 2 (x - \pi/4)$$
 on $[0, \pi/2]$

Solution:

Given function is
$$f(x) = \cos 2(x - \frac{\pi}{4})$$
 on $\left[0, \frac{\pi}{2}\right]$

We know that cosine function is continuous and differentiable on R.

Let's find the values of the function at an extreme,

$$\Rightarrow f(0) = \cos 2\left(0 - \frac{\pi}{4}\right)$$

$$\Rightarrow f(0) = \cos 2\left(-\frac{\pi}{4}\right)$$

$$\Rightarrow f(0) = \cos\left(-\frac{\pi}{2}\right)$$

We know that $\cos (-x) = \cos x$

$$\Rightarrow f(0) = 0$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = \cos 2\left(\frac{\pi}{2} - \frac{\pi}{4}\right)$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = \cos 2\left(\frac{\pi}{4}\right)$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = 0$$

We get $f(0) = f(\frac{\pi}{2})$, so there exist $a^{c} \in (0, \frac{\pi}{2})$ such that f'(c) = 0.

Let's find the derivative of f(x)

$$\Rightarrow f'(x) \; = \; \frac{d\left(\cos 2\left(x - \frac{\pi}{4}\right)\right)}{dx}$$

$$\Rightarrow f'(x) = -\sin\left(2\left(x - \frac{\pi}{4}\right)\right) \frac{d\left(2\left(x - \frac{\pi}{4}\right)\right)}{dx}$$

$$\Rightarrow f'(x) = -2\sin 2\left(x - \frac{\pi}{4}\right)$$

We have f'(c) = 0,

$$\Rightarrow -2\sin 2\left(c - \frac{\pi}{4}\right) = 0$$

$$\Rightarrow c - \frac{\pi}{4} = 0$$

$$\Rightarrow c = \frac{\pi}{4} \in \left(0, \frac{\pi}{2}\right)$$

: Rolle's Theorem is verified.

(ii) $f(x) = \sin 2x$ on $[0, \pi/2]$

Solution:

Given function is f (x) = $\sin 2x$ on $\left[0, \frac{\pi}{2}\right]$

We know that sine function is continuous and differentiable on R. Let's find the values of function at extreme,

$$\Rightarrow$$
 f (0) = sin2 (0)

$$\Rightarrow$$
 f (0) = sin0

$$\Rightarrow$$
 f (0) = 0

$$\Rightarrow f\left(\frac{\pi}{2}\right) = \sin 2\left(\frac{\pi}{2}\right)$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = \sin(\pi)$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = 0$$

We have $f(0) = f(\frac{\pi}{2})$, so there exist $a^{c} \in (0, \frac{\pi}{2})$ such that f'(c) = 0.

Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d(\sin 2x)}{dx}$$

$$\Rightarrow f'(x) = \cos 2x \frac{d(2x)}{dx}$$

$$\Rightarrow$$
 f'(x) = 2cos2x

We have f'(c) = 0,

$$\Rightarrow$$
 2 cos 2c = 0

$$\Rightarrow$$
 2c = $\frac{\pi}{2}$

$$\Rightarrow$$
 c = $\frac{\pi}{4} \in \left(0, \frac{\pi}{2}\right)$

: Rolle's Theorem is verified.

(iii) f (x) = cos 2x on $[-\pi/4, \pi/4]$

Solution:

Given function is $\cos 2x$ on $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$

We know that cosine function is continuous and differentiable on R. Let's find the values of the function at an extreme,

$$\Rightarrow f\left(-\frac{\pi}{4}\right) = \cos 2\left(-\frac{\pi}{4}\right)$$

$$\Rightarrow f(0) = \cos\left(-\frac{\pi}{2}\right)$$

We know that cos(-x) = cos x

$$\Rightarrow$$
 f (0) = 0

$$\Rightarrow f\left(\frac{\pi}{4}\right) = \cos 2\left(\frac{\pi}{4}\right)$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2}\right)$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = 0$$

We have $f\left(-\frac{\pi}{4}\right) = f\left(\frac{\pi}{4}\right)$, so there exist $a^{c} \in \left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$ such that f'(c) = 0.

Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d(\cos 2x)}{dx}$$

$$\Rightarrow f'(x) = -\sin 2x \frac{d(2x)}{dx}$$

$$\Rightarrow$$
 f'(x) = $-2\sin 2x$

We have f'(c) = 0,

$$\Rightarrow$$
 - 2sin2c = 0

$$\Rightarrow$$
 2c = 0

$$\Rightarrow c = \frac{\pi}{4} \in \left(0, \frac{\pi}{2}\right)$$

Rolle's Theorem is verified.

(iv) f (x) =
$$e^x \sin x$$
 on $[0, \pi]$

Solution:

Given function is $f(x) = e^x \sin x$ on $[0, \pi]$

We know that exponential and sine functions are continuous and differentiable on R. Let's find the values of the function at an extreme,

$$\Rightarrow$$
 f (0) = e^0 sin (0)

$$\Rightarrow$$
 f (0) = 1×0

$$\Rightarrow$$
 f (0) = 0

$$\Rightarrow f(\pi) = e^{\pi} \sin(\pi)$$

$$= f(\pi) = e^{\pi} \times 0$$

$$\Rightarrow f(\pi) = 0$$

We have $f(0) = f(\pi)$, so there exist $a^{c \in (0, \pi)}$ such that f'(c) = 0.

Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d(e^x \sin x)}{dx}$$

$$\Rightarrow f'(x) = \sin x \frac{d(e^x)}{dx} + e^x \frac{d(\sin x)}{dx}$$

$$\Rightarrow$$
 f'(x) = e^x (sin x + cos x)

We have f'(c) = 0,

$$\Rightarrow$$
 e^c (sin c + cos c) = 0

$$\Rightarrow$$
 sin c + cos c = 0

$$\Rightarrow \frac{1}{\sqrt{2}} \operatorname{sinc} + \frac{1}{\sqrt{2}} \operatorname{cosc} = 0$$

$$\Rightarrow \sin\left(\frac{\pi}{4}\right) \operatorname{sinc} + \cos\left(\frac{\pi}{4}\right) \operatorname{cosc} = 0$$

$$\Rightarrow \cos\left(c - \frac{\pi}{4}\right) = 0$$

$$c - \frac{\pi}{4} = \frac{\pi}{2}$$

$$\Rightarrow c = \frac{3\pi}{4} \in (0, \pi)$$

: Rolle's Theorem is verified.

(v) f (x) = $e^x \cos x$ on $[-\pi/2, \pi/2]$

Solution:

Given function is $f(x) = e^x \cos x$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$

We know that exponential and cosine functions are continuous and differentiable on R. Let's find the values of the function at an extreme,

$$\Rightarrow f\left(-\frac{\pi}{2}\right) = e^{-\frac{\pi}{2}} \cos\left(-\frac{\pi}{2}\right)$$

$$\Rightarrow f\left(-\frac{\pi}{2}\right) = e^{-\frac{\pi}{2}} \times 0$$

$$\Rightarrow f\left(-\frac{\pi}{2}\right) = 0$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = e^{\frac{\pi}{2}} \cos\left(\frac{\pi}{2}\right)$$

$$\Rightarrow f(\pi) = e^{\frac{\pi}{2}} \times 0$$

$$\Rightarrow f(\pi) = 0$$

We have $f\left(-\frac{\pi}{2}\right) = f\left(\frac{\pi}{2}\right)$, so there exist $a^{c} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such that f'(c) = 0.

Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d(e^x \cos x)}{dx}$$

$$\Rightarrow f'(x) = \cos x \frac{d(e^x)}{dx} + e^x \frac{d(\cos x)}{dx}$$

$$\Rightarrow$$
 f'(x) = e^x (- sin x + cos x)

We have f'(c) = 0,

$$\Rightarrow$$
 e^c (- sin c + cos c) = 0

$$\Rightarrow$$
 - sin c + cos c = 0

$$\Rightarrow \frac{-1}{\sqrt{2}} \operatorname{sinc} + \frac{1}{\sqrt{2}} \operatorname{cosc} = 0$$

$$\Rightarrow$$
 $-\sin\left(\frac{\pi}{4}\right)$ sinc $+\cos\left(\frac{\pi}{4}\right)$ cosc $=0$

$$\Rightarrow \cos\left(c + \frac{\pi}{4}\right) = 0$$

$$\Rightarrow c + \frac{\pi}{4} = \frac{\pi}{2}$$

$$\Rightarrow C = \frac{\pi}{4} \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$$

: Rolle's Theorem is verified.

(vi) f (x) =
$$\cos 2x$$
 on $[0, \pi]$

Solution:

Given function is $f(x) = \cos 2x$ on $[0, \pi]$

We know that cosine function is continuous and differentiable on R. Let's find the values of function at extreme,

$$\Rightarrow$$
 f (0) = cos2(0)

$$\Rightarrow$$
 f (0) = cos(0)

$$\Rightarrow$$
 f (0) = 1

$$\Rightarrow$$
 f $(\pi) = \cos 2(\pi)$

$$\Rightarrow$$
 f (π) = cos(2 π)

$$\Rightarrow$$
 f (π) = 1

We have $f(0) = f(\pi)$, so there exist a c belongs to $(0, \pi)$ such that f'(c) = 0.

Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d(\cos 2x)}{dx}$$

$$\Rightarrow f'(x) = -\sin 2x \frac{d(2x)}{dx}$$

$$\Rightarrow$$
 f'(x) = $-2\sin 2x$

We have f'(c) = 0,

$$\Rightarrow$$
 - 2sin2c = 0

$$\Rightarrow c = \frac{\pi}{4} \epsilon(0, \pi)$$

Hence Rolle's Theorem is verified.

(vii)
$$f(x) = \frac{\sin x}{e^x}$$
 on $0 \le x \le \pi$

Solution:

Given function is
$$f(x) = \frac{\sin x}{e^x}$$
 on $[0, \pi]$

This can be written as

$$\Rightarrow$$
 f (x) = e^{-x} sin x on $[0, \pi]$

We know that exponential and sine functions are continuous and differentiable on R. Let's find the values of the function at an extreme,

$$\Rightarrow$$
 f (0) = e⁻⁰sin(0)

$$\Rightarrow$$
 f (0) = 1×0

$$\Rightarrow$$
 f (0) = 0

$$\Rightarrow f(\pi) = e^{-\pi} sin(\pi)$$

$$\rightarrow f(\pi) = e^{-\pi} \times 0$$

$$\Rightarrow f(\pi) = 0$$

We have $f(0) = f(\pi)$, so there exist a c belongs to $(0, \pi)$ such that f'(c) = 0.

Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d(e^{-x}\sin x)}{dx}$$

$$\Rightarrow f'(x) = \sin x \frac{d(e^{-x})}{dx} + e^{-x} \frac{d(\sin x)}{dx}$$

$$\Rightarrow$$
 f'(x) = sin x (-e^{-x}) + e^{-x}(cos x)

$$\Rightarrow$$
 f'(x) = e^{-x}(- sin x + cos x)

We have f'(c) = 0,

$$\Rightarrow$$
 e^{-c} (- sin c + cos c) = 0

$$\Rightarrow$$
 - sin c + cos c = 0

$$\Rightarrow -\frac{1}{\sqrt{2}} \operatorname{sinc} + \frac{1}{\sqrt{2}} \operatorname{cosc} = 0$$

$$\Rightarrow -\sin\left(\frac{\pi}{4}\right) \operatorname{sinc} + \cos\left(\frac{\pi}{4}\right) \operatorname{cosc} = 0$$

$$\Rightarrow \cos\left(c + \frac{\pi}{4}\right) = 0$$

$$\Rightarrow c + \frac{\pi}{4} = \frac{\pi}{2}$$

$$\Rightarrow c = \frac{\pi}{4} \epsilon(0, \pi)$$

: Rolle's Theorem is verified.

(viii) $f(x) = \sin 3x$ on $[0, \pi]$

Solution:

Given function is $f(x) = \sin 3x$ on $[0, \pi]$

We know that sine function is continuous and differentiable on R. Let's find the values of function at extreme,

$$\Rightarrow$$
 f (0) = sin3(0)

$$\Rightarrow$$
 f (0) = sin0

$$\Rightarrow$$
 f (0) = 0

$$\Rightarrow$$
 f $(\pi) = \sin 3(\pi)$

$$\Rightarrow$$
 f (π) = sin(3 π)

$$\Rightarrow$$
 f $(\pi) = 0$

We have $f(0) = f(\pi)$, so there exist a c belongs to $(0, \pi)$ such that f'(c) = 0.

Let's find the derivative of f(x)

$$\Rightarrow f'(x) = \frac{d(\sin 3x)}{dx}$$

$$\Rightarrow f'(x) = \cos 3x \frac{d(3x)}{dx}$$

$$\Rightarrow$$
 f'(x) = 3cos3x

We have f'(c) = 0,

$$\Rightarrow$$
 3cos3c = 0

$$\Rightarrow$$
 3c = $\frac{\pi}{2}$

$$\Rightarrow c = \frac{\pi}{6} \epsilon(0, \pi)$$

: Rolle's Theorem is verified.

(ix)
$$f(x) = e^{1-x^2}$$
 on $[-1, 1]$

Solution:

Given function is $f(x) = e^{1-x^2}$ on [-1, 1]

We know that exponential function is continuous and differentiable over R. Let's find the value of function f at extremes,

$$\Rightarrow f(-1) = e^{1-(-1)^2}$$

$$\Rightarrow f(-1) = e^{1-1}$$

$$\Rightarrow$$
 f (-1) = e^0

$$\Rightarrow$$
 f (-1) = 1

$$\Rightarrow f(1) = e^{1-1^2}$$

$$\Rightarrow f(1) = e^{1-1}$$

$$\Rightarrow$$
 f (1) = e^0

$$\Rightarrow$$
 f(1) = 1

We got f(-1) = f(1) so, there exists a $c \in (-1, 1)$ such that f'(c) = 0.

Let's find the derivative of the function f:

$$\Rightarrow f'(x) \, = \, \frac{d\left(e^{1-x^2}\right)}{dx}$$

$$\Rightarrow f'(x) = e^{1-x^2} \frac{d(1-x^2)}{dx}$$

$$\Rightarrow f'(x) = e^{1-x^2}(-2x)$$

We have f'(c) = 0

$$\Rightarrow e^{1-c^2}(-2c) = 0$$

$$\Rightarrow$$
 2c = 0

$$\Rightarrow$$
 c = 0 \in [-1, 1]

: Rolle's Theorem is verified.

$$(x) f (x) = log (x^2 + 2) - log 3 on [-1, 1]$$

Solution:

Given function is $f(x) = \log(x^2 + 2) - \log 3$ on [-1, 1]

We know that logarithmic function is continuous and differentiable in its own domain.

We check the values of the function at the extreme,

$$\Rightarrow$$
 f (-1) = log((-1)² + 2) - log 3

$$\Rightarrow$$
 f (-1) = log (1 + 2) - log 3

$$\Rightarrow$$
 f (-1) = log 3 - log 3

$$\Rightarrow$$
 f ($-$ 1) = 0

$$\Rightarrow f(1) = \log(1^2 + 2) - \log 3$$

$$\Rightarrow$$
 f (1) = log (1 + 2) - log 3

$$\Rightarrow$$
 f (1) = log 3 - log 3

$$\Rightarrow$$
 f (1) = 0

We have got f(-1) = f(1). So, there exists a c such that $c \in (-1, 1)$ such that f'(c) = 0. Let's find the derivative of the function f,

$$\Rightarrow f'(x) = \frac{d(\log(x^2 + 2) - \log 3)}{dx}$$

$$\Rightarrow f'(x) = \frac{1}{x^2 + 2} \frac{d(x^2 + 2)}{dx} - 0$$

$$\Rightarrow f'(x) = \frac{2x}{x^2 + 2}$$

We have f'(c) = 0

$$\Rightarrow \frac{2c}{c^2 + 2} = 0$$

$$\Rightarrow$$
 2c = 0

$$\Rightarrow$$
 c = 0 \in (-1, 1)

: Rolle's Theorem is verified.

(xi) f (x) = $\sin x + \cos x$ on $[0, \pi/2]$

Solution:

Given function is $f(x) = \sin x + \cos x$ on $\left[0, \frac{\pi}{2}\right]$

We know that sine and cosine functions are continuous and differentiable on R. Let's the value of function f at extremes:

$$\Rightarrow$$
 f (0) = sin (0) + cos (0)

$$\Rightarrow$$
 f (0) = 0 + 1

$$\Rightarrow$$
 f (0) = 1

$$\Rightarrow f\left(\frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) + \cos\left(\frac{\pi}{2}\right)$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = 1 + 0$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = 1$$

We have $f(0) = f(\frac{\pi}{2})$. So, there exists a $c \in (0, \frac{\pi}{2})$ such that f'(c) = 0.

Let's find the derivative of the function f.

$$\Rightarrow f'(x) = \frac{d(\sin x + \cos x)}{dx}$$

$$\Rightarrow$$
 f'(x) = cos x - sin x

$$\Rightarrow$$
 f'(x) = 4 cos²x + 2 cos x - 2

We have f'(c) = 0,

$$\Rightarrow$$
 4cos²c + 2 cos c - 2 = 0

$$\Rightarrow$$
 2cos²c + cos c - 1 = 0

$$\Rightarrow$$
 2cos²c + 2 cos c - cos c - 1 = 0

$$\Rightarrow$$
 2 cos c (cos c + 1) - 1 (cos c + 1) = 0

$$\Rightarrow$$
 (2cos c - 1) (cos c + 1) = 0

$$\Rightarrow$$
 cosc = $\frac{1}{2}$ or cosc = -1

$$\Rightarrow c = \frac{\pi}{3} \epsilon(0, \pi)$$

: Rolle's Theorem is verified.

(xiii)
$$f(x) = \frac{x}{2} - \sin \frac{\pi x}{6}$$
 on [-1, 0]

Solution:

Given function is
$$f(x) = \frac{x}{2} - \sin(\frac{\pi x}{6})$$
 on $[-1, 0]$

We know that sine function is continuous and differentiable over R.

Now we have to check the values of 'f' at an extreme

$$\Rightarrow f(-1) = \frac{-1}{2} - \sin\left(\frac{\pi(-1)}{6}\right)$$

$$\Rightarrow f(-1) = -\frac{1}{2} - \sin\left(\frac{-\pi}{6}\right)$$

$$\Rightarrow f(-1) = -\frac{1}{2} - \left(-\frac{1}{2}\right)$$

$$\Rightarrow$$
 f (-1) = 0

$$\Rightarrow f(0) = \frac{0}{2} - \sin\left(\frac{\pi(0)}{6}\right)$$

$$f(0) = 0 - \sin(0)$$

$$\Rightarrow$$
 f (0) = 0 - 0

$$\Rightarrow f(0) = 0$$

We have got f(-1) = f(0). So, there exists a $c \in (-1, 0)$ such that f'(c) = 0.

Now we have to find the derivative of the function 'f'

$$\Rightarrow f'(x) \; = \; \frac{d\left(\frac{x}{2} - \sin\left(\frac{\pi x}{6}\right)\right)}{dx}$$

$$\Rightarrow f'(x) = \frac{1}{2} - \cos\left(\frac{\pi x}{6}\right) \frac{d\left(\frac{\pi x}{6}\right)}{dx}$$

$$\Rightarrow f'(x) = \frac{1}{2} - \frac{\pi}{6} \cos\left(\frac{\pi x}{6}\right)$$

We have f'(c) = 0

$$\Rightarrow \frac{1}{2} - \frac{\pi}{6} \cos \left(\frac{\pi c}{6} \right) = 0$$

$$\Rightarrow \frac{\pi}{6} \cos\left(\frac{\pi c}{6}\right) = \frac{1}{2}$$

$$\Rightarrow \cos\left(\frac{\pi c}{6}\right) = \frac{1}{2} \times \frac{6}{\pi}$$

$$\Rightarrow \cos\left(\frac{\pi c}{6}\right) = \frac{3}{\pi}$$

$$\Rightarrow \frac{\pi c}{6} = \cos^{-1}\left(\frac{3}{\pi}\right)$$

$$\Rightarrow$$
 c = $\frac{6}{\pi}$ cos⁻¹ $\left(\frac{3}{\pi}\right)$

Cosine is positive between $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, for our convenience we take the

interval to be $-\frac{\pi}{2} \le \theta \le 0$, since the values of the cosine repeats.

We know that $\frac{3}{\pi}$ value is nearly equal to 1. So, the value of the c nearly equal to 0.

So, we can clearly say that $c \in (-1, 0)$.

: Rolle's Theorem is verified.

$$\Rightarrow f'(x) = \frac{6}{\pi} - 4(2sinxcosx)$$

$$\Rightarrow f'(x) = \frac{6}{\pi} - 4\sin 2x$$

We have f'(c) = 0

$$\Rightarrow \frac{6}{\pi} - 4\sin 2c = 0$$

$$\Rightarrow$$
 4sin2c = $\frac{6}{\pi}$

$$\Rightarrow \sin 2c = \frac{6}{4\pi}$$

We know
$$\frac{6}{4\pi} < \frac{1}{2}$$

$$\Rightarrow \sin 2c < \frac{1}{2}$$

$$\Rightarrow$$
 2c < sin⁻¹ $\left(\frac{1}{2}\right)$

$$\Rightarrow 2c < \frac{\pi}{6}$$

$$\Rightarrow c < \frac{\pi}{12} \in \left(0, \frac{\pi}{6}\right)$$

: Rolle's Theorem is verified.

(xv) f (x) =
$$4^{\sin x}$$
 on [0, π]

Solution:

Given function is $f(x) = 4^{sinx}$ on $[0, \pi]$

We that sine function is continuous and differentiable over R.

Now we have to check the values of function 'f' at extremes

$$\Rightarrow$$
 f (0) = $4^{\sin(0)}$

$$\Rightarrow$$
 f (0) = 4^0

$$\Rightarrow$$
 f (0) = 1

(xiv).
$$f(x) = \frac{6x}{\pi} - 4 \sin^2 x$$
 on $[0, \frac{\pi}{6}]$

Solution:

Given function is
$$f(x) = \frac{6x}{\pi} - 4\sin^2 x$$
 on $\left[0, \frac{\pi}{6}\right]$

We know that sine function is continuous and differentiable over R.

Now we have to check the values of function 'f' at the extremes,

$$\Rightarrow f(0) = \frac{6(0)}{\pi} - 4\sin^2(0)$$

$$\Rightarrow f(0) = 0 - 4(0)$$

$$\Rightarrow$$
 f (0) = 0

$$\Rightarrow f\left(\frac{\pi}{6}\right) = \frac{6\left(\frac{\pi}{6}\right)}{\pi} - 4\sin^2\left(\frac{\pi}{6}\right)$$

$$\Rightarrow f\left(\frac{\pi}{6}\right) = \frac{\pi}{\pi} - 4\left(\frac{1}{2}\right)^2$$

$$\Rightarrow f\left(\frac{\pi}{6}\right) = 1 - 4\left(\frac{1}{4}\right)$$

$$\Rightarrow f\left(\frac{\pi}{6}\right) = 1 - 1$$

$$\Rightarrow f\left(\frac{\pi}{6}\right) = 0$$

We have $f(0) = f(\frac{\pi}{6})$. So, there exists a $c \in (0, \frac{\pi}{6})$ such that f'(c) = 0.

We have to find the derivative of function 'f.'

$$\Rightarrow f'(x) = \frac{d(\frac{6x}{\pi} - 4\sin^2 x)}{dx}$$

$$\Rightarrow f'(x) = \frac{6}{\pi} - 4 \times 2\sin x \times \frac{d(\sin x)}{dx}$$

$$\Rightarrow f'(x) = \frac{6}{\pi} - 8\sin x(\cos x)$$

$$\Rightarrow f'(x) = \frac{6}{\pi} - 4(2\sin x \cos x)$$

$$\Rightarrow f'(x) = \frac{6}{\pi} - 4\sin 2x$$

We have f'(c) = 0

$$\Rightarrow \frac{6}{\pi} - 4\sin 2c = 0$$

$$\Rightarrow$$
 4sin2c = $\frac{6}{\pi}$

$$\Rightarrow \sin 2c = \frac{6}{4\pi}$$

We know $\frac{6}{4\pi} < \frac{1}{2}$

$$\Rightarrow \sin 2c < \frac{1}{2}$$

$$\Rightarrow$$
 2c < sin⁻¹ $\left(\frac{1}{2}\right)$

$$\Rightarrow 2c < \frac{\pi}{6}$$

$$\Rightarrow c < \frac{\pi}{12} \in \left(0, \frac{\pi}{6}\right)$$

: Rolle's Theorem is verified.

(xv) f (x) =
$$4^{\sin x}$$
 on [0, π]

Solution:

Given function is $f(x) = 4^{sinx}$ on $[0, \pi]$

We that sine function is continuous and differentiable over R.

Now we have to check the values of function 'f' at extremes

$$\Rightarrow$$
 f (0) = $4^{\sin(0)}$

$$\Rightarrow$$
 f (0) = 4^0

$$\Rightarrow f(0) = 1$$

$$\Rightarrow$$
 f (π) = 4^{sin π}

$$\Rightarrow$$
 f (π) = 4⁰

$$\Rightarrow$$
 f (π) = 1

We have $f(0) = f(\pi)$. So, there exists a $c \in (0, \pi)$ such that f'(c) = 0.

Now we have to find the derivative of 'f'

$$\Rightarrow f'(x) = \frac{d(4^{\sin x})}{dx}$$

$$\Rightarrow f'(x) = 4^{\sin x} \log 4 \frac{d(\sin x)}{dx}$$

$$\Rightarrow f'(x) = 4^{\sin x} \log 4 \cos x$$

We have f'(c) = 0

$$\Rightarrow 4^{\text{sinc}} \log 4 \cos c = 0$$

$$\Rightarrow$$
 Cos c = 0

$$\Rightarrow c = \frac{\pi}{2} \epsilon(0, \pi)$$

: Rolle's Theorem is verified.

(xvi) f (x) =
$$x^2 - 5x + 4$$
 on $[0, \pi/6]$

Solution:

Given function is $f(x) = x^2 - 5x + 4$ on [1, 4]

Since, given function f is a polynomial it is continuous and differentiable everywhere i.e., on R.

Let us find the values at extremes

$$\Rightarrow$$
 f (1) = $1^2 - 5(1) + 4$

$$\Rightarrow$$
 f (1) = 1 - 5 + 4

$$\Rightarrow f(1) = 0$$

$$\Rightarrow$$
 f (4) = $4^2 - 5(4) + 4$

$$\Rightarrow$$
 f (4) = 16 - 20 + 4

$$\Rightarrow$$
 f (4) = 0

We have f(1) = f(4). So, there exists a $c \in (1, 4)$ such that f'(c) = 0.

Let's find the derivative of f(x):

$$\Rightarrow f'(x) = \frac{d(x^2 - 5x + 4)}{dx}$$

$$\Rightarrow f'(x) = \frac{d(x^2)}{dx} - \frac{d(5x)}{dx} + \frac{d(4)}{dx}$$

$$\Rightarrow f'(x) = 2x - 5 + 0$$

$$\Rightarrow$$
 f'(x) = 2x - 5

We have f'(c) = 0

$$\Rightarrow$$
 f'(c) = 0

$$\Rightarrow$$
 2c $-$ 5 = 0

$$\Rightarrow$$
 2c = 5

$$\Rightarrow$$
 c = $\frac{5}{2}$

$$\Rightarrow$$
 C = 2.5 \in (1, 4)

: Rolle's Theorem is verified.

(xvii) f (x) = $\sin^4 x + \cos^4 x$ on $[0, \pi/2]$

Solution:

Given function is f (x) = $\sin^4 x + \cos^4 x$ on $\left[0, \frac{\pi}{2}\right]$

We know that sine and cosine functions are continuous and differentiable functions over R.

Now we have to find the value of function 'f' at extremes

$$\Rightarrow$$
 f (0) = sin⁴ (0) + cos⁴ (0)

$$\Rightarrow$$
 f (0) = (0)⁴ + (1)⁴

$$\Rightarrow$$
 f (0) = 0 + 1

$$\Rightarrow$$
 f (0) = 1

$$\Rightarrow f\left(\frac{\pi}{2}\right) = \sin^4\left(\frac{\pi}{2}\right) + \cos^4\left(\frac{\pi}{2}\right)$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = 1^4 + 0^4$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = 1 + 0$$

$$\Rightarrow f\left(\frac{\pi}{2}\right) = 1$$

We have $f(0) = f(\frac{\pi}{2})$. So, there exists a $c \in (0, \frac{\pi}{2})$ such that f'(c) = 0.

Now we have to find the derivative of the function 'f'.

$$\Rightarrow f'(x) = \frac{d(\sin^4 x + \cos^4 x)}{dx}$$

$$\Rightarrow f'(x) = 4\sin^3 x \frac{d(\sin x)}{dx} + 4\cos^3 x \frac{d(\cos x)}{dx}$$

$$\Rightarrow$$
 f'(x) = 4sin³xcosx-4cos³xsinx

$$\Rightarrow$$
 f'(x) = 4 sin x cos x (sin²x - cos²x)

$$\Rightarrow$$
 f'(x) = 2(2 sin x cos x) (- cos 2x)

$$\Rightarrow$$
 f'(x) = -2(sin 2x) (cos 2x)

$$\Rightarrow$$
 f'(x) = - sin 4x

We have
$$f'(c) = 0$$

$$\Rightarrow$$
 - sin4c = 0

$$\Rightarrow$$
 sin4c = 0

$$\Rightarrow$$
 4c = 0 or π

$$\Rightarrow c = \frac{\pi}{4} \in \left(0, \frac{\pi}{2}\right)$$

: Rolle's Theorem is verified.

(xviii)
$$f(x) = \sin x - \sin 2x$$
 on $[0, \pi]$

Solution:

Given function is $f(x) = \sin x - \sin 2x$ on $[0, \pi]$

We know that sine function is continuous and differentiable over R.

Now we have to check the values of the function 'f' at the extremes.

$$\Rightarrow$$
 f (0) = sin (0)-sin 2(0)

$$\Rightarrow$$
 f (0) = 0 - sin (0)

$$\Rightarrow$$
 f (0) = 0

$$\Rightarrow$$
 f (π) = sin (π) – sin (π)

$$\Rightarrow$$
 f $(\pi) = 0 - \sin(2\pi)$

$$\Rightarrow$$
 f (π) = 0

We have $f(0) = f(\pi)$. So, there exists a $c \in (0, \pi)$ such that f'(c) = 0.

Now we have to find the derivative of the function 'f'

$$\Rightarrow f'(x) = \frac{d(\sin x - \sin 2x)}{dx}$$

$$\Rightarrow f'(x) = \cos x - \cos 2x \frac{d(2x)}{dx}$$

$$= f'(x) = \cos x - 2\cos 2x$$

$$\Rightarrow$$
 f'(x) = cos x - 2(2cos²x - 1)

$$\Rightarrow$$
 f'(x) = cos x - 4cos²x + 2

We have f'(c) = 0

$$\Rightarrow$$
 Cos c – 4cos²c + 2 = 0

$$\Rightarrow \cos c = \frac{-1 \pm \sqrt{(1)^2 - (4 \times -4 \times 2)}}{2 \times -4}$$

$$\Rightarrow \cos c = \frac{-1 \pm \sqrt{1 + 33}}{-8}$$

$$\Rightarrow c = \cos^{-1}(\frac{-1\pm\sqrt{33}}{-8})$$

We can see that $c \in (0, \pi)$

- : Rolle's Theorem is verified.
- 4. Using Rolle's Theorem, find points on the curve $y = 16 x^2$, $x \in [-1, 1]$, where tangent is parallel to x axis.

Solution:

Given function is $y = 16 - x^2$, $x \in [-1, 1]$

We know that polynomial function is continuous and differentiable over R.

Let us check the values of 'y' at extremes

$$\Rightarrow$$
 y (-1) = 16 - (-1)²

$$\Rightarrow$$
 y (-1) = 16 - 1

$$\Rightarrow$$
 y $(-1) = 15$

$$\Rightarrow$$
 y (1) = 16 - (1)²

$$\Rightarrow$$
 y (1) = 16 - 1

$$\Rightarrow$$
 y (1) = 15

We have y(-1) = y(1). So, there exists a $c \in (-1, 1)$ such that f'(c) = 0.

We know that for a curve g, the value of the slope of the tangent at a point r is given by g'(r).

Now we have to find the derivative of curve y

$$\Rightarrow y' = \frac{d(16-x^2)}{dx}$$

$$\Rightarrow$$
 y' = $-2x$

We have y'(c) = 0

$$\Rightarrow$$
 - 2c = 0

$$\Rightarrow$$
 c = 0 \in (-1, 1)

Value of y at x = 1 is

$$\Rightarrow$$
 y = 16 - 0²

$$\Rightarrow$$
 y = 16

 \therefore The point at which the curve y has a tangent parallel to x – axis (since the slope of x – axis is 0) is (0, 16).

EXERCISE 15.2

PAGE NO: 15.17

1. Verify Lagrange's mean value theorem for the following functions on the indicated intervals. In each case find a point 'c' in the indicated interval as stated by the Lagrange's mean value theorem:

(i)
$$f(x) = x^2 - 1$$
 on [2, 3]

Solution:

Given
$$f(x) = x^2 - 1$$
 on [2, 3]

We know that every polynomial function is continuous everywhere on $(-\infty, \infty)$ and differentiable for all arguments. Here, f(x) is a polynomial function. So it is continuous in [2, 3] and differentiable in (2, 3). So both the necessary conditions of Lagrange's mean value theorem is satisfied.

Therefore, there exist a point $c \in (2, 3)$ such that:

$$f'(c) = \frac{f(3) - f(2)}{3 - 2}$$

$$\Rightarrow f'(c) = \frac{f(3) - f(2)}{1}$$

$$f(x) = x^2 - 1$$

Differentiating with respect to x

$$f'(x) = 2x$$

For f'(c), put the value of x=c in f'(x):

$$f'(c) = 2c$$

For f(3), put the value of x=3 in f(x):

$$f(3) = (3)^2 - 1$$

$$= 9 - 1$$

For f (2), put the value of x=2 in f(x):

$$f(2) = (2)^2 - 1$$

$$= 4 - 1$$

$$=3$$

$$f'(c) = f(3) - f(2)$$

$$\Rightarrow$$
 2c = 8 - 3

$$\Rightarrow$$
 2c = 5

$$\Rightarrow c = \frac{5}{2} \in (2, 3)$$

Hence, Lagrange's mean value theorem is verified.

(ii)
$$f(x) = x^3 - 2x^2 - x + 3$$
 on [0, 1]

Solution:

Given
$$f(x) = x^3 - 2x^2 - x + 3$$
 on [0, 1]

Every polynomial function is continuous everywhere on $(-\infty, \infty)$ and differentiable for all arguments. Here, f(x) is a polynomial function. So it is continuous in [0, 1] and differentiable in (0, 1). So both the necessary conditions of Lagrange's mean value theorem is satisfied.

Therefore, there exist a point $c \in (0, 1)$ such that:

$$f'(c) = \frac{f(1) - f(0)}{1 - 0}$$

$$\Rightarrow f'(c) = \frac{f(1) - f(0)}{1}$$

$$f(x) = x^3 - 2x^2 - x + 3$$

Differentiating with respect to x

$$f'(x) = 3x^2 - 2(2x) - 1$$

$$=3x^2-4x-1$$

For f'(c), put the value of x=c in f'(x)

$$f'(c) = 3c^2 - 4c - 1$$

For f (1), put the value of x = 1 in f(x)

$$f(1)=(1)^3-2(1)^2-(1)+3$$

$$= 1 - 2 - 1 + 3$$

= 1

For f (0), put the value of x=0 in f(x)

$$f(0)=(0)^3-2(0)^2-(0)+3$$

$$= 0 - 0 - 0 + 3$$

$$f'(c) = f(1) - f(0)$$

$$\Rightarrow 3c^2 - 4c - 1 = 1 - 3$$

$$\Rightarrow 3c^2 - 4c = 1 + 1 - 3$$

$$\Rightarrow$$
 3c² - 4c = -1

$$\Rightarrow$$
 3c² - 4c + 1 = 0

$$\Rightarrow 3c^2 - 3c - c + 1 = 0$$

$$\Rightarrow$$
 3c(c-1) - 1(c-1) = 0

$$\Rightarrow$$
 (3c - 1) (c - 1) = 0

$$\Rightarrow$$
 c= $\frac{1}{3}$, 1

$$\Rightarrow c = \frac{1}{3} \in (0, 1)$$

Hence, Lagrange's mean value theorem is verified.

(iii)
$$f(x) = x(x-1)$$
 on [1, 2]

Solution:

Given f (x) = x (x - 1) on [1, 2]
=
$$x^2 - x$$

Every polynomial function is continuous everywhere on $(-\infty, \infty)$ and differentiable for all arguments. Here, f(x) is a polynomial function. So it is continuous in [1, 2] and differentiable in (1, 2). So both the necessary conditions of Lagrange's mean value theorem is satisfied.

Therefore, there exist a point $c \in (1, 2)$ such that:

$$f'(c) = \frac{f(2) - f(1)}{2 - 1}$$

$$\Rightarrow f'(c) = \frac{f(2) - f(1)}{1}$$

$$f(x) = x^2 - x$$

Differentiating with respect to x

$$f'(x) = 2x - 1$$

For f'(c), put the value of x=c in f'(x):

$$f'(c) = 2c - 1$$

For f (2), put the value of x = 2 in f(x)

$$f(2) = (2)^2 - 2$$

$$= 4 - 2$$

= 2

For f (1), put the value of x = 1 in f(x):

$$f(1)=(1)^2-1$$

$$= 1 - 1$$

$$= 0$$

$$f'(c) = f(2) - f(1)$$

$$\Rightarrow$$
 2c - 1 = 2 - 0

$$\Rightarrow$$
 2c = 2 + 1

$$\Rightarrow$$
 2c = 3

$$\Rightarrow c = \frac{3}{2} \in (1, 2)$$

Hence, Lagrange's mean value theorem is verified.

(iv)
$$f(x) = x^2 - 3x + 2$$
 on [-1, 2]

Solution:

Given
$$f(x) = x^2 - 3x + 2$$
 on $[-1, 2]$

Every polynomial function is continuous everywhere on $(-\infty, \infty)$ and differentiable for all arguments. Here, f(x) is a polynomial function. So it is continuous in [-1, 2] and differentiable in (-1, 2). So both the necessary conditions of Lagrange's mean value theorem is satisfied.

Therefore, there exist a point $c \in (-1, 2)$ such that:

$$f'(c) = \frac{f(2) - f(-1)}{2 - (-1)}$$

$$\Rightarrow f'(c) = \frac{f(2) - f(-1)}{2 + 1}$$

$$\Rightarrow f'(c) = \frac{f(2) - f(-1)}{3}$$

$$f(x) = x^2 - 3x + 2$$

Differentiating with respect to x

$$f'(x) = 2x - 3$$

For f'(c), put the value of x = c in f'(x):

$$f'(c) = 2c - 3$$

For f (2), put the value of x = 2 in f(x)

$$f(2) = (2)^2 - 3(2) + 2$$

$$=4-6+2$$

= 0

For f(-1), put the value of x = -1 in f(x):

$$f(-1) = (-1)^2 - 3(-1) + 2$$

$$= 1 + 3 + 2$$

= 6

$$f'(c) = \frac{f(2) - f(-1)}{3}$$

$$\Rightarrow 2c - 3 = \frac{0 - 6}{3}$$

$$\Rightarrow 2c = \frac{-6}{3} + 3$$

$$\Rightarrow$$
 2c = $-2 + 3$

$$\Rightarrow$$
 2c = -1

$$\Rightarrow c = \frac{-1}{2} \in (-1, 2)$$

Hence, Lagrange's mean value theorem is verified.

(v)
$$f(x) = 2x^2 - 3x + 1$$
 on [1, 3]

Solution:

Given
$$f(x) = 2x^2 - 3x + 1$$
 on [1, 3]

Every polynomial function is continuous everywhere on $(-\infty, \infty)$ and differentiable for all arguments. Here, f(x) is a polynomial function. So it is continuous in [1, 3] and differentiable in (1, 3). So both the necessary conditions of Lagrange's mean value theorem is satisfied.

Therefore, there exist a point $c \in (1, 3)$ such that:

 $f'(c) = \frac{f(3) - f(1)}{3 - 1}$

$$\Rightarrow f^{'}(c) = \frac{f(3) - f(1)}{2}$$

$$f(x) = 2x^2 - 3x + 1$$

Differentiating with respect to x

$$f'(x) = 2(2x) - 3$$

$$= 4x - 3$$

For f'(c), put the value of x = c in f'(x):

$$f'(c) = 4c - 3$$

For f (3), put the value of x = 3 in f(x):

$$f(3) = 2(3)^2 - 3(3) + 1$$

$$= 2 (9) - 9 + 1$$

$$= 18 - 8 = 10$$

For f (1), put the value of x = 1 in f(x):

$$f(1) = 2(1)^2 - 3(1) + 1$$

$$= 2(1) - 3 + 1$$

$$= 2 - 2 = 0$$

$$f'(c) = \frac{f(3) - f(1)}{2}$$

$$\Rightarrow 4c - 3 = \frac{10 - 0}{2}$$

$$\Rightarrow 4c = \frac{10}{2} + 3$$

$$\Rightarrow$$
 4c = 5 + 3

$$\Rightarrow$$
 4c = 8

$$\Rightarrow c = \frac{8}{4} = 2 \in (1, 3)$$

Hence, Lagrange's mean value theorem is verified.

(vi)
$$f(x) = x^2 - 2x + 4$$
 on [1, 5]

Solution:

Given $f(x) = x^2 - 2x + 4$ on [1, 5]

Every polynomial function is continuous everywhere on $(-\infty, \infty)$ and differentiable for all arguments. Here, f(x) is a polynomial function. So it is continuous in [1, 5] and differentiable in (1, 5). So both the necessary conditions of Lagrange's mean value theorem is satisfied.

Therefore, there exist a point $c \in (1, 5)$ such that:

$$f'(c) = \frac{f(5) - f(1)}{5 - 1}$$

$$\Rightarrow f'(c) = \frac{f(5) - f(1)}{4}$$

$$f(x) = x^2 - 2x + 4$$

Differentiating with respect to x:

$$f'(x) = 2x - 2$$

For f'(c), put the value of x=c in f'(x):

$$f'(c) = 2c - 2$$

For f (5), put the value of x=5 in f(x):

$$f(5)=(5)^2-2(5)+4$$

$$= 25 - 10 + 4$$

For f (1), put the value of x = 1 in f(x)

$$f(1) = (1)^2 - 2(1) + 4$$

$$= 1 - 2 + 4$$

$$f'(c) = \frac{f(5) - f(1)}{4}$$

$$\Rightarrow 2c - 2 = \frac{19 - 3}{4}$$

$$\Rightarrow 2c = \frac{16}{4} + 2$$

$$\Rightarrow$$
 2c = 4 + 2

$$\Rightarrow$$
 2c= 6

⇒
$$c = \frac{6}{2} = 3 \in (1, 5)$$

Hence, Lagrange's mean value theorem is verified.

(vii)
$$f(x) = 2x - x^2$$
 on [0, 1]

Solution:

Given $f(x) = 2x - x^2$ on [0, 1]

Every polynomial function is continuous everywhere on $(-\infty, \infty)$ and differentiable for all arguments. Here, f(x) is a polynomial function. So it is continuous in [0, 1] and differentiable in (0, 1). So both the necessary conditions of Lagrange's mean value theorem is satisfied.

Therefore, there exist a point $c \in (0, 1)$ such that:

$$f'(c) = \frac{f(1) - f(0)}{1 - 0}$$

$$\Rightarrow$$
 f'(c) = f(1) - f(0)

$$f(x) = 2x - x^2$$

Differentiating with respect to x:

$$f'(x) = 2 - 2x$$

For f'(c), put the value of x = c in f'(x):

$$f'(c) = 2 - 2c$$

For f (1), put the value of x = 1 in f(x):

$$f(1)=2(1)-(1)^2$$

$$= 2 - 1$$

For f (0), put the value of x = 0 in f(x):

$$f(0) = 2(0) - (0)^2$$

$$= 0 - 0$$

$$= 0$$

$$f'(c) = f(1) - f(0)$$

$$\Rightarrow$$
 2 - 2c = 1 - 0

$$\Rightarrow$$
 - 2c = 1 - 2

$$\Rightarrow$$
 - 2c = -1

$$\Rightarrow c = \frac{-1}{-2} = \frac{1}{2} \in (0, 1)$$

Hence, Lagrange's mean value theorem is verified.

(viii)
$$f(x) = (x-1)(x-2)(x-3)$$

Solution:

Given
$$f(x) = (x-1)(x-2)(x-3)$$
 on $[0, 4]$

=
$$(x^2 - x - 2x + 3) (x - 3)$$

= $(x^2 - 3x + 3) (x - 3)$
= $x^3 - 3x^2 + 3x - 3x^2 + 9x - 9$
= $x^3 - 6x^2 + 12x - 9$ on $[0, 4]$

Every polynomial function is continuous everywhere on $(-\infty, \infty)$ and differentiable for all arguments. Here, f(x) is a polynomial function. So it is continuous in [0, 4] and differentiable in (0, 4). So both the necessary conditions of Lagrange's mean value theorem is satisfied.

Therefore, there exist a point $c \in (0, 4)$ such that:

$$f'(c) = \frac{f(4) - f(0)}{4 - 0}$$

$$\Rightarrow f'(c) = \frac{f(4) - f(0)}{4}$$

$$f(x) = x^3 - 6x^2 + 12x - 9$$

Differentiating with respect to x:

$$f'(x) = 3x^2 - 6(2x) + 12$$

$$=3x^2-12x+12$$

For f'(c), put the value of x = c in f'(x):

$$f'(c) = 3c^2 - 12c + 12$$

For f (4), put the value of x = 4 in f(x):

$$f(4) = (4)^3 - 6(4)^2 + 12(4) - 9$$

$$= 64 - 96 + 48 - 9$$

= 7

For f (0), put the value of x = 0 in f(x):

$$f(0)=(0)^3-6(0)^2+12(0)-9$$

$$=0-0+0-9$$

$$= -9$$

$$f'(c) = \frac{f(4) - f(0)}{4}$$

$$\Rightarrow 3c^2 - 12c + 12 = \frac{7 - (-9)}{4}$$

$$\Rightarrow 3c^2 - 12c + 12 = \frac{7+9}{4}$$

$$\Rightarrow 3c^2 - 12c + 12 = \frac{16}{4}$$

$$\Rightarrow$$
 3c² - 12c + 12 = 4

$$\Rightarrow 3c^2 - 12c + 8 = 0$$

We know that for quadratic equation, $ax^2 + bx + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\Rightarrow c = \frac{-(-12)\pm\sqrt{(-12)^2 - 4\times 3\times 8}}{2\times 3}$$

$$\Rightarrow c = \frac{12 \pm \sqrt{144 - 96}}{6}$$

$$\Rightarrow c = \frac{12 \pm \sqrt{48}}{6}$$

$$\Rightarrow c = \frac{12 \pm 4\sqrt{3}}{6}$$

$$\Rightarrow c = \frac{12}{6} \pm \frac{4\sqrt{3}}{6}$$

$$\Rightarrow c = 2 \pm \frac{2\sqrt{3}}{3}$$

⇒ c = 2+
$$\frac{2\sqrt{3}}{3}$$
, 2 - $\frac{2\sqrt{3}}{3}$ ∈ c

Hence, Lagrange's mean value theorem is verified.

(ix).
$$f(x) = \sqrt{25 - x^2}$$
 on [-3, 4]

Solution:

Given

$$f(x) = \sqrt{25 - x^2}$$
 on $[-3, 4]$

$$Here_{1}\sqrt{25-x^{2}}>0$$

$$\Rightarrow$$
 25 - $x^2 > 0$

$$\Rightarrow$$
 x² < 25

$$\Rightarrow -5 < x < 5$$

$$\Rightarrow \sqrt{25 - x^2}$$
 has unique values for all $x \in (-5, 5)$

∴ f (x) is continuous in [-3, 4]

$$f(x) = (25 - x^2)^{\frac{1}{2}}$$

Differentiating with respect to x:

$$f'(x) = \frac{1}{2} \left(25 - x^2\right)^{\left(\frac{1}{2} - 1\right)} \frac{d(25 - x^2)}{dx}$$

$$\Rightarrow f'(x) = \frac{1}{2} (25 - x^2)^{-\frac{1}{2}} (-2x)$$

$$\Rightarrow f'(x) = \frac{-2x}{2(25 - x^2)^{\frac{1}{2}}}$$

$$\Rightarrow f'(x) = \frac{-2x}{2(25 - x^2)^{\frac{1}{2}}}$$

$$\Rightarrow f'(x) = \frac{-x}{\sqrt{25 - x^2}}$$

Here also,

$$\sqrt{25-x^2}>0$$

$$\Rightarrow -5 < x < 5$$

∴f (x) is differentiable in (– 3, 4)

So both the necessary conditions of Lagrange's mean value theorem is satisfied. Therefore, there exist a point $c \in (-3, 4)$ such that:

$$f'(c) = \frac{f(4) - f(-3)}{4 - (-3)}$$

$$\Rightarrow f'(c) = \frac{f(4) - f(-3)}{4 + 3}$$

$$\Rightarrow f'(c) = \frac{f(4) - f(-3)}{7}$$

$$f(x) = (25 - x^2)^{\frac{1}{2}}$$

On differentiating with respect to x:

$$f'(x) = \frac{-x}{\sqrt{25 - x^2}}$$

For f'(c), put the value of x = c in f'(x):

$$f'(c) = \frac{-c}{\sqrt{25 - c^2}}$$

For f (4), put the value of x = 4 in f(x):

$$f(4) = \left(25 - 4^2\right)^{\frac{1}{2}}$$

$$\Rightarrow$$
 f(4) = $(25 - 16)^{\frac{1}{2}}$

$$\Rightarrow$$
 f(4)=(9) $\frac{1}{2}$

$$\Rightarrow f(4) = 3$$

For f(-3), put the value of x = -3 in f(x):

$$f(-3) = (25 - (-3)^2)^{\frac{1}{2}}$$

$$\Rightarrow$$
 f(-3)=(25-9) $\frac{1}{2}$

$$\Rightarrow$$
 f(-3)=(16) $\frac{1}{2}$

$$\Rightarrow$$
 f (-3) = 4

$$f'(c) = \frac{f(4) - f(-3)}{7}$$

$$\Rightarrow \frac{-c}{\sqrt{25-c^2}} = \frac{3-4}{7}$$

$$\Rightarrow \frac{-c}{\sqrt{25-c^2}} = \frac{-1}{7}$$

$$\Rightarrow$$
 - 7c= - $\sqrt{25 - c^2}$

Squaring on both sides:

$$\Rightarrow (-7c)^2 = (-\sqrt{25-c^2})^2$$

$$\Rightarrow$$
 49c² = 25 - c²

$$\Rightarrow$$
 50c² = 25

$$\Rightarrow c^2 = \frac{25}{50}$$

$$\Rightarrow$$
 $c^2 = \frac{1}{2}$

$$\Rightarrow c = \pm \frac{1}{\sqrt{2}} \in (-3, 4)$$

Hence, Lagrange's mean value theorem is verified.

(x) f (x) =
$$tan^{-1}x$$
 on [0, 1]

Solution:

Given $f(x) = \tan^{-1} x$ on [0, 1]

Tan -1 x has unique value for all x between 0 and 1.

 \therefore f (x) is continuous in [0, 1]

$$f(x) = \tan^{-1} x$$

Differentiating with respect to x:

$$f'(x) = \frac{1}{1+x^2}$$

 x^2 always has value greater than 0.

$$\Rightarrow$$
 1 + $x^2 > 0$

∴ f (x) is differentiable in (0, 1)

So both the necessary conditions of Lagrange's mean value theorem is satisfied. Therefore, there exist a point $c \in (0, 1)$ such that:

$$f'(c) = \frac{f(1) - f(0)}{1 - 0}$$

$$\Rightarrow$$
 f'(c) = f(1) - f(0)

$$f(x) = tan^{-1} x$$

Differentiating with respect to x:

$$f'(x) = \frac{1}{1+x^2}$$

For f'(c), put the value of x=c in f'(x):

$$f'(c) = \frac{1}{1+c^2}$$

For f(1), put the value of x=1 in f(x):

$$f(1) = \tan^{-1} 1$$

$$\Rightarrow f(1) = \frac{\pi}{4}$$

For f(0), put the value of x=0 in f(x):

$$f(0) = \tan^{-1} 0$$

$$\Rightarrow$$
 f (0) = 0

$$f'(c) = f(1) - f(0)$$

$$\Rightarrow \frac{1}{1+c^2} = \frac{n}{4} - 0$$

$$\Rightarrow \frac{1}{1+c^2} = \frac{\pi}{4}$$

$$\Rightarrow 4 = \pi(1+c^2)$$

$$\Rightarrow$$
 4 = Π + Π c²

$$\Rightarrow - \pi c^2 = \pi - 4$$

$$\Rightarrow c^2 = \frac{\pi - 4}{-\pi}$$

$$\Rightarrow$$
 c² = $\frac{4-\Pi}{\Pi}$

$$\Rightarrow c = \sqrt{\frac{4}{n} - 1} \approx 0.52 \in (0, 1)$$

Hence, Lagrange's mean value theorem is verified.

(xi)
$$f(x) = x + \frac{1}{x}$$
 on [1, 3]

Solution:

Given

$$f(x) = x + \frac{1}{x}$$
 on [1, 3]

F (x) has unique values for all $x \in (1, 3)$

∴ f (x) is continuous in [1, 3]

$$f(x) = x + \frac{1}{x} \text{ on } [1, 3]$$

Differentiating with respect to x

$$f'(x) = 1 + (-1)(x)^{-2}$$

$$\Rightarrow f'(x) = 1 - \frac{1}{x^2}$$

$$\Rightarrow f'(x) = \frac{x^2 - 1}{x^2}$$

 \Rightarrow f'(x) exists for all values except 0

∴ f (x) is differentiable in (1, 3)

So both the necessary conditions of Lagrange's mean value theorem is satisfied. Therefore, there exist a point $c \in (1, 3)$ such that:

$$f'(c) = \frac{f(3) - f(1)}{3 - 1}$$

$$\Rightarrow f'(c) = \frac{f(3) - f(1)}{2}$$

$$f(x) = x + \frac{1}{x}$$

On differentiating with respect to x:

$$f'(x) = \frac{x^2 - 1}{x^2}$$

For f'(c), put the value of x=c in f'(x):

$$f'(c) = \frac{c^2 - 1}{c^2}$$

For f (3), put the value of x = 3 in f(x):

$$f(3)=3+\frac{1}{3}$$

$$\Rightarrow$$
 f(3)= $\frac{9+1}{3}$

$$\Rightarrow f(3) = \frac{10}{3}$$

For f(1), put the value of x = 1 in f(x):

$$f(1) = 1 + \frac{1}{1}$$

$$\Rightarrow$$
 f(1) = 2

$$\Rightarrow f'(c) = \frac{f(3) - f(1)}{2}$$

$$\Rightarrow \frac{c^2 - 1}{c^2} = \frac{\frac{10}{3} - 2}{2}$$

$$\Rightarrow 2(c^2 - 1) = c^2 \left(\frac{10}{3} - 2\right)$$

$$\Rightarrow 2(c^2 - 1) = c^2 \left(\frac{10 - 6}{3}\right)$$

$$\Rightarrow 2(c^2 - 1) = c^2 \left(\frac{4}{3}\right)$$

$$\Rightarrow$$
 6(c² - 1) = 4c²

$$\Rightarrow$$
 6c² - 6 = 4c²

$$\Rightarrow 6c^2 - 4c^2 = 6$$

$$\Rightarrow$$
 2c² = 6

$$\Rightarrow$$
 c²= $\frac{6}{2}$

$$\Rightarrow$$
 c² = 3

$$\Rightarrow c = \pm \sqrt{3} \in (-3, 4)$$

Hence, Lagrange's mean value theorem is verified.

(xii)
$$f(x) = x(x + 4)^2$$
 on [0, 4]

Solution:

Given $f(x) = x(x + 4)^2$ on [0, 4]

$$= x [(x)^2 + 2 (4) (x) + (4)^2]$$

$$= x (x^2 + 8x + 16)$$

$$= x^3 + 8x^2 + 16x$$
 on $[0, 4]$

Every polynomial function is continuous everywhere on $(-\infty, \infty)$ and differentiable for all arguments. Here, f(x) is a polynomial function. So it is continuous in [0, 4] and differentiable in (0, 4). So both the necessary conditions of Lagrange's mean value theorem is satisfied. Therefore, there exist a point $c \in (0, 4)$ such that:

$$f'(c) = \frac{f(4) - f(0)}{4 - 0}$$

$$\Rightarrow f'(c) = \frac{f(4) - f(0)}{4}$$

$$f(x) = x^3 + 8x^2 + 16x$$

Differentiating with respect to x:

$$f'(x) = 3x^2 + 8(2x) + 16$$

$$=3x^2+16x+16$$

For f'(c), put the value of x = c in f'(x):

$$f'(c) = 3c^2 + 16c + 16$$

For f (4), put the value of x = 4 in f(x):

$$f(4)=(4)^3+8(4)^2+16(4)$$

$$= 64 + 128 + 64$$

$$= 256$$

For f (0), put the value of x = 0 in f(x):

$$f(0)=(0)^3+8(0)^2+16(0)$$

$$= 0 + 0 + 0$$

$$f'(c) = \frac{f(4) - f(0)}{4}$$

$$\Rightarrow 3c^2 + 16c + 16 = \frac{256 - 0}{4}$$

$$\Rightarrow 3c^2 + 16c + 16 = \frac{256}{4}$$

$$\Rightarrow$$
 3c² + 16c + 16 = 64

$$\Rightarrow$$
 3c² + 16c + 16 - 64 = 0

$$\Rightarrow$$
 3c² + 16c - 48 = 0

For quadratic equation, $ax^2 + bx + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\Rightarrow c = \frac{-(16) \pm \sqrt{(16)^2 - 4 \times 3 \times (-48)}}{2 \times 3}$$

$$\Rightarrow c = \frac{-16 \pm \sqrt{256 + 576}}{6}$$

$$\Rightarrow c = \frac{-16 \pm \sqrt{832}}{6}$$

$$\Rightarrow c = \frac{-16 \pm 8\sqrt{13}}{6}$$

$$\Rightarrow c = \frac{-16}{6} \pm \frac{8\sqrt{13}}{6}$$

$$\Rightarrow c = \frac{-8}{3} \pm \frac{4\sqrt{13}}{3}$$

$$\Rightarrow c = \frac{-8}{3} + \frac{4\sqrt{13}}{3}, \frac{-8}{3} - \frac{4\sqrt{13}}{3} \in c$$

Hence, Lagrange's mean value theorem is verified.

(xiii)
$$f(x) = \sqrt{x^2 - 4}$$
 on [2, 4]

Solution:

Given

$$f(x) = \sqrt{x^2 - 4}$$
 on [2, 4]

Here,

$$\sqrt{x^2 - 4} > 0$$

$$\Rightarrow$$
 $x^2 - 4 > 0$

$$\Rightarrow x^2 > 4$$

 \Rightarrow f (x) exists for all values expect (-2, 2)

∴ f (x) is continuous in [2, 4]

$$f(x) = \sqrt{x^2 - 4}$$

Differentiating with respect to x:

$$f'(x) = \frac{1}{2} (x^2 - 4)^{(\frac{1}{2} - 1)} \frac{d(x^2 - 4)}{dx}$$

$$\Rightarrow$$
 f'(x)= $\frac{1}{2}(x^2-4)^{-\frac{1}{2}}(2x)$

$$\Rightarrow f'(x) = \frac{2x}{2(x^2 - 4)^{\frac{1}{2}}}$$

$$\Rightarrow f'(x) = \frac{x}{\sqrt{x^2 - 4}}$$

Here also,
$$\sqrt{x^2 - 4} > 0$$

 \Rightarrow f'(x) exists for all values of x except (2, -2)

∴ f (x) is differentiable in (2, 4)

So both the necessary conditions of Lagrange's mean value theorem is satisfied.

Therefore, there exist a point $c \in (2, 4)$ such that:

$$f'(c) = \frac{f(4) - f(2)}{4 - 2}$$

$$\Rightarrow f'(c) = \frac{f(4) - f(2)}{2}$$

$$f(x) = \sqrt{x^2 - 4}$$

On differentiating with respect to x:

$$f'(x) = \frac{x}{\sqrt{x^2 - 4}}$$

For f'(c), put the value of x=c in f'(x):

$$f'(c) = \frac{c}{\sqrt{c^2 - 4}}$$

For f (4), put the value of x = 4 in f(x):

$$f(4) = \sqrt{4^2 - 4}$$

$$\Rightarrow$$
 f(4) = (16 - 4) $\frac{1}{2}$

$$\Rightarrow f(4) = \sqrt{12}$$

$$\Rightarrow$$
 f(4) = $2\sqrt{3}$

For f (2), put the value of x = 2 in f(x):

$$f(2) = \sqrt{2^2 - 4}$$

$$\Rightarrow$$
 f(2) = $(4-4)^{\frac{1}{2}}$

$$\Rightarrow$$
 f(2) = 0

$$\Rightarrow f'(c) = \frac{f(4) - f(2)}{2}$$

$$\Rightarrow \frac{c}{\sqrt{c^2-4}} = \frac{2\sqrt{3}-0}{2}$$

$$\Rightarrow \frac{c}{\sqrt{c^2 - 4}} = \sqrt{3}$$

$$\Rightarrow$$
 c = $(\sqrt{3})\sqrt{c^2 - 4}$

Squaring both sides:

$$\Rightarrow$$
 (c)² = (($\sqrt{3}$) $\sqrt{c^2 - 4}$)²

$$\Rightarrow$$
 c² = 3(c² - 4)

$$\Rightarrow$$
 c² = 3c² - 12

$$\Rightarrow$$
 - 2c² = -12

$$\Rightarrow$$
 c² = $\frac{-12}{-2}$

$$\Rightarrow$$
 c² = 6

$$\Rightarrow$$
 c = $\pm \sqrt{6}$

$$\Rightarrow$$
 c = $\sqrt{6} \in (2, 4)$

Hence, Lagrange's mean value theorem is verified.

(xiv)
$$f(x) = x^2 + x - 1$$
 on [0, 4]

Solution:

Given
$$f(x) = x^2 + x - 1$$
 on [0, 4]

Every polynomial function is continuous everywhere on $(-\infty, \infty)$ and differentiable for all arguments. Here, f(x) is a polynomial function. So it is continuous in [0, 4] and differentiable in (0, 4). So both the necessary conditions of Lagrange's mean value theorem is satisfied. Therefore, there exist a point $c \in (0, 4)$ such that:

$$f'(c) = \frac{f(4) - f(0)}{4 - 0}$$

$$\Rightarrow f'(c) = \frac{f(4) - f(0)}{4}$$

$$f(x) = x^2 + x - 1$$

Differentiating with respect to x:

$$f'(x) = 2x + 1$$

For f'(c), put the value of x = c in f'(x):

$$f'(c) = 2c + 1$$

For f (4), put the value of x = 4 in f(x):

$$f(4)=(4)^2+4-1$$

$$= 16 + 4 - 1$$

For f(0), put the value of x = 0 in f(x):

$$f(0) = (0)^2 + 0 - 1$$

$$= 0 + 0 - 1$$

$$= -1$$

$$f'(c) = \frac{f(4) - f(0)}{4}$$

$$\Rightarrow 2c + 1 = \frac{19 - (-1)}{4}$$

$$\Rightarrow 2c + 1 = \frac{20}{4}$$

$$\Rightarrow$$
 2c + 1 = 5

$$\Rightarrow$$
 2c = 5 - 1

$$\Rightarrow$$
 2c = 4

$$\Rightarrow c = \frac{4}{2} = 2 \in (0, 4)$$

Hence, Lagrange's mean value theorem is verified.

$$(xv) f(x) = \sin x - \sin 2x - x \text{ on } [0, \pi]$$

Solution:

Given $f(x) = \sin x - \sin 2x - x$ on $[0, \pi]$

Sin x and cos x functions are continuous everywhere on $(-\infty, \infty)$ and differentiable for all arguments. So both the necessary conditions of Lagrange's mean value theorem is satisfied. Therefore, there exist a point $c \in (0, \pi)$ such that:

$$f'(c) = \frac{f(n) - f(0)}{n - 0}$$

$$\Rightarrow f'(c) = \frac{f(n) - f(0)}{n}$$

$$f(x) = \sin x - \sin 2x - x$$

Differentiating with respect to x:

$$f(x) = \sin x - \sin 2x - x$$

$$\Rightarrow f'(x) = \cos x - \cos 2x \frac{d(2x)}{dx} - 1$$

$$\Rightarrow$$
 f'(x)=cos x - 2cos 2x - 1

For f'(c), put the value of x=c in f'(x):

$$f'(c) = \cos c - 2\cos 2c - 1$$

For f (π), put the value of x = π in f(x):

$$f(\pi) = \sin \pi - \sin 2\pi - \pi$$

$$= 0 - 0 - \pi$$

 $=-\pi$

For f(0), put the value of x=0 in f(x):

$$f(0) = \sin 0 - \sin 2(0) - 0$$

$$= \sin 0 - \sin 0 - 0$$

$$= 0 - 0 - 0$$

= 0

$$f'(c) = \frac{f(n) - f(0)}{n}$$

$$\Rightarrow \cos c - 2\cos 2c - 1 = \frac{-\pi - 0}{\pi}$$

$$\Rightarrow$$
 Cos c - 2cos 2c - 1 = -1

$$\Rightarrow$$
 Cos c - 2(2cos² c - 1) = -1 + 1

$$\Rightarrow$$
 Cos c - 4cos² c + 2 = 0

$$\Rightarrow$$
 4cos² c - cos c - 2 = 0

For quadratic equation, $ax^2 + bx + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\Rightarrow \cos c = \frac{-(-1)\pm\sqrt{(-1)^2-4\times4\times(-2)}}{2\times4}$$

$$\Rightarrow \cos c = \frac{1 \pm \sqrt{1 + 32}}{8}$$

$$\Rightarrow \cos c = \frac{1 \pm \sqrt{33}}{8}$$

$$\Rightarrow c = \cos^{-1}\left(\frac{1\pm\sqrt{33}}{8}\right) \in (0, \pi)$$

Hence, Lagrange's mean value theorem is verified.

(xvi)
$$f(x) = x^3 - 5x^2 - 3x$$
 on [1, 3]

Solution:

Given
$$f(x) = x^3 - 5x^2 - 3x$$
 on [1, 3]

Every polynomial function is continuous everywhere on $(-\infty, \infty)$ and differentiable for all arguments. Here, f(x) is a polynomial function. So it is continuous in [1, 3] and differentiable in (1, 3). So both the necessary conditions of Lagrange's mean value theorem is satisfied.

Therefore, there exist a point $c \in (1, 3)$ such that:

$$f'(c) = \frac{f(3) - f(1)}{3 - 1}$$

$$\Rightarrow f'(c) = \frac{f(3) - f(1)}{2}$$

$$f(x) = x^3 - 5x^2 - 3x$$

Differentiating with respect to x:

$$f'(x) = 3x^2 - 5(2x) - 3$$

$$=3x^2-10x-3$$

For f'(c), put the value of x=c in f'(x):

$$f'(c) = 3c^2 - 10c - 3$$

For f (3), put the value of x = 3 in f(x):

$$f(3)=(3)^3-5(3)^2-3(3)$$

$$= 27 - 45 - 9$$

$$= -27$$

For f (1), put the value of x = 1 in f(x):

$$f(1)=(1)^3-5(1)^2-3(1)$$

$$=1-5-3$$

$$f'(c) = \frac{f(3) - f(1)}{2}$$

$$\Rightarrow$$
 3c² - 10c - 3= $\frac{(-27) - (-7)}{2}$

$$\Rightarrow$$
 3c² - 10c - 3= $\frac{-27+7}{2}$

$$\Rightarrow 3c^2 - 10c - 3 = \frac{-20}{2}$$

⇒
$$3c^{2} - 10c - 3 = -10$$

⇒ $3c^{2} - 10c - 3 + 10 = 0$
⇒ $3c^{2} - 10c + 7 = 0$
⇒ $3c^{2} - 7c - 3c + 7 = 0$
⇒ $c(3c - 7) - 1(3c - 7) = 0$
⇒ $(3c - 7)(c - 1) = 0$
⇒ $c = \frac{7}{3}$, 1
⇒ $c = \frac{7}{3} \in (1, 3)$

Hence, Lagrange's mean value theorem is verified.

2. Discuss the applicability of Lagrange's mean value theorem for the function f(x) = |x| on [-1, 1].

Solution:

Given
$$f(x) = |x|$$
 on $[-1, 1]$

So
$$f(x)$$
 can be defined as $=\begin{cases} -x, & x < 0 \\ x, & x \ge 0 \end{cases}$

For differentiability at x = 0,

LHD =
$$\lim_{x \to 0^{-}} \frac{f(0-h) - f(0)}{-h}$$

 $\{Since f(x) = -x, x<0\}$

$$= \lim_{x \to 0^{-}} \frac{-(0-h)-0}{-h}$$

$$= \lim_{x \to 0^{-}} \frac{h - 0}{-h}$$

$$=\lim_{x\to 0^-}\frac{h}{-h}$$

= -1

RHD =
$$\lim_{x \to 0^{+}} \frac{f(0-h) - f(0)}{-h}$$

 $\{Since f(x) = x, x>0\}$

$$= \lim_{x \to 0^{-}} \frac{(0-h) - 0}{-h}$$

$$= \lim_{x \to 0^{-}} \frac{-h - 0}{-h}$$

$$= \lim_{x \to 0^{-}} \frac{-h}{-h}$$

= 1

LHD ≠ RHD

- \Rightarrow f (x) is not differential at x=0
- \therefore Lagrange's mean value theorem is not applicable for the function f(x) = |x| on [-1, 1].

3. Show that the Lagrange's mean value theorem is not applicable to the function f(x) = 1/x on [-1, 1].

Solution:

Given
$$f(x) = \frac{1}{x}$$
 on [- 1, 1]

Here, $x \neq 0$

- \Rightarrow f (x) exists for all values of x except 0
- \Rightarrow f (x) is discontinuous at x=0
- \therefore f (x) is not continuous in [-1, 1]

Hence the Lagrange's mean value theorem is not applicable to the function f(x) = 1/x on [-1, 1]

4. Verify the hypothesis and conclusion of Lagrange's mean value theorem for the function

$$f(x) = \frac{1}{4x-1}, 1 \le x \le 4.$$

Solution:

Given

Where 4x - 1>0

f'(x) has unique values for all x except 1/4

∴ f (x) is continuous in [1, 4]

$$f(x) = \frac{1}{4x - 1}$$

Differentiating with respect to x:

$$f'(x) = (-1)(4x - 1)^{-2}(4)$$

$$\Rightarrow f'(x) = -\frac{4}{(4x-1)^2}$$

Here, 4x - 1>0

f'(x) has unique values for all x except 1/4

 \therefore f (x) is differentiable in (1, 4)

So both the necessary conditions of Lagrange's mean value theorem is satisfied. Therefore, there exist a point $c \in (1, 4)$ such that:

$$f'(c) = \frac{f(4) - f(1)}{4 - 1}$$

$$\Rightarrow f'(c) = \frac{f(4) - f(1)}{3}$$

$$f(x) = \frac{1}{4x - 1}$$

On differentiating with respect to x:

$$f'(x) = -\frac{4}{(4x-1)^2}$$

For f'(c), put the value of x=c in f'(x):

$$f'(c) = -\frac{4}{(4c-1)^2}$$

For f(4), put the value of x = 4 in f(x):

$$f(4) = \frac{1}{4(4) - 1}$$

$$\Rightarrow f(4) = \frac{1}{16 - 1}$$

$$\Rightarrow f(4) = \frac{1}{15}$$

For f(1), put the value of x = 1 in f(x):

$$f(1) = \frac{1}{4(1) - 1}$$

$$\Rightarrow f(1) = \frac{1}{4-1}$$

$$\Rightarrow f(1) = \frac{1}{3}$$

$$\Rightarrow f'(c) = \frac{f(4) - f(1)}{3}$$

$$\Rightarrow -\frac{4}{(4c-1)^2} = \frac{\frac{1}{15} - \frac{1}{3}}{3}$$

$$\Rightarrow$$
 - 3(4)= $(4c-1)^2 \left(\frac{1}{15} - \frac{1}{3}\right)$

$$\Rightarrow$$
 - 12= $(4c-1)^2 \left(\frac{3-15}{45}\right)$

$$\Rightarrow -12 = (4c-1)^2 \left(\frac{-12}{45}\right)$$

$$\Rightarrow$$
 - 12× $\frac{45}{-12}$ = $(4c-1)^2$

Hence, Lagrange's mean value theorem is verified.

5. Find a point on the parabola $y = (x - 4)^2$, where the tangent is parallel to the chord joining (4, 0) and (5, 1).

Solution:

Given $f(x) = (x-4)^2$ on [4, 5]

This interval [a, b] is obtained by x – coordinates of the points of the chord. Every polynomial function is continuous everywhere on $(-\infty, \infty)$ and differentiable for all arguments. Here, f(x) is a polynomial function. So it is continuous in [4, 5] and differentiable in (4, 5). So both the necessary conditions of Lagrange's mean value theorem is satisfied.

Therefore, there exist a point $c \in (4, 5)$ such that:

$$f'(c) = \frac{f(5) - f(4)}{5 - 4}$$

$$\Rightarrow f'(c) = \frac{f(5) - f(4)}{1}$$

$$f(x) = (x - 4)^{2}$$

Differentiating with respect to x:

$$f'(x) = 2(x-4) \frac{d(x-4)}{dx}$$

 $\Rightarrow f'(x) = 2(x-4)(1)$

⇒
$$f'(x) = 2 (x - 4)$$

For $f'(c)$, put the value of x=c in $f'(x)$:
 $f'(c) = 2 (c - 4)$
For $f(5)$, put the value of x=5 in $f(x)$:
 $f(5) = (5 - 4)^2$
= $(1)^2$
= 1
For $f(4)$, put the value of x=4 in $f(x)$:
 $f(4) = (4 - 4)^2$
= $(0)^2$

= 0

$$\Rightarrow 2(c-4) = 1-0$$

$$\Rightarrow$$
 2c - 8 = 1

$$\Rightarrow$$
 2c = 1 + 8

$$\Rightarrow$$
 c = $\frac{9}{2}$ = 4.5 \in (4, 5)

Now, put this value of x in f(x) to obtain y:

$$y = (x - 4)^2$$

$$\Rightarrow y = \left(\frac{9}{2} - 4\right)^{\frac{1}{2}}$$

$$\Rightarrow y = \left(\frac{9-8}{2}\right)^2$$

$$\Rightarrow$$
 y = $\left(\frac{1}{2}\right)^2$

$$\Rightarrow$$
 y = $\frac{1}{4}$

Hence, the required point is
$$\left(\frac{9}{2}, \frac{1}{4}\right)$$