

EXERCISE 6.1

PAGE NO: 6.5

1. Sketch the graphs of the following functions:

(i)
$$f(x) = 2 \sin x$$
, $0 \le x \le \pi$

(ii) g (x) =
$$3 \sin (x - \pi/4)$$
, $0 \le x \le 5\pi/4$

(iii) h (x) =
$$2 \sin 3x$$
, $0 \le x \le 2\pi/3$

(iv)
$$\phi$$
 (x) = 2 sin (2x - π /3), $0 \le x \le 7\pi$ /3

(v)
$$\Psi$$
 (x) = 4 sin 3 (x – π /4), $0 \le x \le 2\pi$

(vi)
$$\theta$$
 (x) = $\sin (x/2 - \pi/4)$, $0 \le x \le 4\pi$

(vii)
$$u(x) = \sin^2 x$$
, $0 \le x \le 2\pi v(x) = |\sin x|$, $0 \le x \le 2\pi$

(viii)
$$f(x) = 2 \sin \pi x$$
, $0 \le x \le 2$

Solution:

(i)
$$f(x) = 2 \sin x, 0 \le x \le \pi$$

We know that $g(x) = \sin x$ is a periodic function with period π .

So, $f(x) = 2 \sin x$ is a periodic function with period π . So, we will draw the graph of $f(x) = 2 \sin x$ in the interval $[0, \pi]$. The values of $f(x) = 2 \sin x$ at various points in $[0, \pi]$ are listed in the following table:

X	0(A)	$\pi/6$ (B)	$\pi/3$ (C)	$\pi/2$ (D)	$2\pi/3$ (E)	$5\pi/6 (F)$	$\Pi(G)$
f(x) = 2	0	1	$\sqrt{3} = 1.73$	2	$\sqrt{3} = 1.73$	1	0
sin x							

The required curve is:

(ii)
$$g(x) = 3 \sin(x - \pi/4), 0 \le x \le 5\pi/4$$

We know that if f(x) is a periodic function with period T, then f(ax + b) is periodic with

period T/|a|.

So, g (x) = 3 sin (x - $\pi/4$) is a periodic function with period π . So, we will draw the graph of g (x) = 3 sin (x - $\pi/4$) in the interval [0, $5\pi/4$]. The values of g (x) = 3 sin (x - $\pi/4$) at various points in [0, $5\pi/4$] are listed in the following table:

X	0(A)	π/4 (B)	$\pi/2$ (C)	$3\pi/4$ (D)	π (E)	5π/4 (F)
g(x) = 3	$-3/\sqrt{2} = -$	0	$3/\sqrt{2} =$	3	$3/\sqrt{2} =$	0
sin (x -	2.1		2.12		2.12	
$\pi/4$)						

The required curve is:

(iii) h (x) =
$$2 \sin 3x$$
, $0 \le x \le 2\pi/3$

We know that $g(x) = \sin x$ is a periodic function with period 2π .

So, h (x) = 2 sin 3x is a periodic function with period $2\pi/3$. So, we will draw the graph of h (x) = 2 sin 3x in the interval [0, $2\pi/3$]. The values of h (x) = 2 sin 3x at various points in [0, $2\pi/3$] are listed in the following table:

X	0 (A)	π/6 (B)	π/3 (C)	$\pi/2$ (D)	$2\pi/3$ (E)
$h(x) = 2 \sin x$	0	2	0	-2	0
3x					

(iv)
$$\phi(x) = 2 \sin(2x - \pi/3), 0 \le x \le 7\pi/3$$

We know that if f(x) is a periodic function with period T, then f(ax + b) is periodic with period T/|a|.

So, $\phi(x) = 2 \sin(2x - \pi/3)$ is a periodic function with period π . So, we will draw the graph of $\phi(x) = 2 \sin(2x - \pi/3)$, in the interval $[0, 7\pi/5]$. The values of $\phi(x) = 2 \sin(2x - \pi/3)$, at various points in $[0, 7\pi/5]$ are listed in the following table:

x	0 (A)	$\pi/6$ (B)	$2\pi/3$ (C)	$7\pi/6$ (D)	$7\pi/5$ (E)
$\phi(x) = 2 \sin x$	$-\sqrt{3} = -1.73$	0	0	0	1.98
$(2x - \pi/3)$					

(v)
$$\Psi(x) = 4 \sin 3(x - \pi/4), 0 \le x \le 2\pi$$

We know that if f(x) is a periodic function with period T, then f(ax + b) is periodic with period T/|a|.

So, $\Psi(x) = 4 \sin 3 (x - \pi/4)$ is a periodic function with period 2π . So, we will draw the graph of $\Psi(x) = 4 \sin 3 (x - \pi/4)$ in the interval $[0, 2\pi]$. The values of $\Psi(x) = 4 \sin 3 (x - \pi/4)$ at various points in $[0, 2\pi]$ are listed in the following table:

X	0 (A)	π/4 (B)	π/2 (C)	π (D)	5π/4 (E)	2π (F)
$\Psi(x) = 4$	$-2\sqrt{2} = -$	0	$2\sqrt{2} = 2.82$	0	1.98	$-2\sqrt{2} = -$
sin 3 (x –	2.82					2.82
$\pi/4$)						

The required curve is:

(vi) θ (x) = $\sin (x/2 - \pi/4)$, $0 \le x \le 4\pi$

We know that if f(x) is a periodic function with period T, then f(ax + b) is periodic with period T/|a|.

So, θ (x) = \sin (x/2 - π /4) is a periodic function with period 4π . So, we will draw the graph of θ (x) = \sin (x/2 - π /4) in the interval [0, 4π]. The values of θ (x) = \sin (x/2 - π /4) at various points in [0, 4π] are listed in the following table:

	X	0 (A)	$\pi/2$ (B)	π (C)	2π (D)	$5\pi/2$ (E)	3π (F)	4π (G)
1	$\theta(x) =$	$-1/\sqrt{2} = -$	0	$1/\sqrt{2} =$	$1/\sqrt{2} =$	0	$-1/\sqrt{2} = -$	$-1/\sqrt{2} =$
	$\sin(x/2 -$	0.7		0.7	0.7		0.7	-0.7
	$\pi/4)$							

(vii)
$$u(x) = \sin^2 x$$
, $0 \le x \le 2\pi v(x) = |\sin x|$, $0 \le x \le 2\pi$

We know that $g(x) = \sin x$ is a periodic function with period π .

So, $u(x) = \sin^2 x$ is a periodic function with period 2π . So, we will draw the graph of $u(x) = \sin^2 x$ in the interval $[0, 2\pi]$. The values of $u(x) = \sin^2 x$ at various points in $[0, 2\pi]$ are listed in the following table:

X	0 (A)	$\pi/2$ (B)	П (С)	$3\pi/2$ (D)	2π (E)
$u(x) = \sin^2 x$	0	1	0	1	0

The required curve is:

(viii)
$$f(x) = 2 \sin \pi x, 0 \le x \le 2$$

We know that $g(x) = \sin x$ is a periodic function with period 2π .

So, $f(x) = 2 \sin \pi x$ is a periodic function with period 2. So, we will draw the graph of f

(x) = $2 \sin \pi x$ in the interval [0, 2]. The values of f (x) = $2 \sin \pi x$ at various points in [0, 2] are listed in the following table:

X	0 (A)	1/2 (B)	1 (C)	3/2 (D)	2 (E)
$f(x) = 2 \sin x$	0	2	0	-2	0
πx					

The required curve is:

2. Sketch the graphs of the following pairs of functions on the same axes:

(i)
$$f(x) = \sin x$$
, $g(x) = \sin (x + \pi/4)$

(ii)
$$f(x) = \sin x, g(x) = \sin 2x$$

(iii)
$$f(x) = \sin 2x, g(x) = 2 \sin x$$

(iv)
$$f(x) = \sin x/2$$
, $g(x) = \sin x$

Solution:

(i)
$$f(x) = \sin x$$
, $g(x) = \sin (x + \pi/4)$

We know that the functions $f(x) = \sin x$ and $g(x) = \sin (x + \pi/4)$ are periodic functions with periods 2π and $7\pi/4$.

The values of these functions are tabulated below:

Values of $f(x) = \sin x$ in $[0, 2\pi]$

X	0	$\pi/2$	π	$3\pi/2$	2π
$f(x) = \sin x$	0	1	0	-1	0

Values of g (x) = $\sin (x + \pi/4)$ in [0, $7\pi/4$]

X	0	$\pi/4$	$3\pi/4$	$5\pi/4$	$7\pi/4$
$g(x) = \sin(x)$	$1/\sqrt{2} = 0.7$	1	0	-1	0
$+ \pi/4)$					

The required curve is:

(ii)
$$f(x) = \sin x, g(x) = \sin 2x$$

We know that the functions $f(x) = \sin x$ and $g(x) = \sin 2x$ are periodic functions with periods 2π and π .

The values of these functions are tabulated below:

Values of $f(x) = \sin x$ in $[0, 2\pi]$

X	0	$\pi/2$	π	$3\pi/2$	2π
$f(x) = \sin x$	0	1	0	-1	0

Values of g (x) = $\sin(2x)$ in $[0, \pi]$

x	0	$\pi/4$	$\pi/2$	$3\pi/4$	π	$5\pi/4$	$3\pi/2$	$7\pi/4$	2π
g(x) =	0	1	0	-1	0	1	0	-1	0
sin									
(2x)									

(iii)
$$f(x) = \sin 2x, g(x) = 2 \sin x$$

We know that the functions $f(x) = \sin 2x$ and $g(x) = 2 \sin x$ are periodic functions with periods π and π .

The values of these functions are tabulated below:

Values of $f(x) = \sin(2x)$ in $[0, \pi]$

v	0	$\pi/4$	$\pi/2$	$3\pi/4$	77	$5\pi/4$	3 - 12	$7\pi/4$	2π
X	U	11/4	$\pi/2$	311/4	π	311/4	$3\pi/2$	/11/4	2π
f(x) =	0	1	0	\-1	0	1	0	-1	0
. '					/				
sın									
(2x)			4						
(41)									

Values of g (x) = $2 \sin x$ in $[0, \pi]$

X	0	$\pi/2$	π	$3\pi/2$	2π
$g(x) = 2 \sin x$	0	1	0	-1	0
X					

(iv)
$$f(x) = \sin x/2$$
, $g(x) = \sin x$

We know that the functions $f(x) = \sin x/2$ and $g(x) = \sin x$ are periodic functions with periods π and 2π .

The values of these functions are tabulated below:

Values of $f(x) = \sin x/2$ in $[0, \pi]$

X	0	π	2π	3π	4π
$f(x) = \sin$	0	1	0	-1	0
x/2					

Values of g (x) = \sin (x) in [0, 2π]

X	0	$\pi/2$	π	$3\pi/2$	2π	$5\pi/2$	3π	$7\pi/2$	4π
g(x) =	0	1	0	-1	0	1	0	-1	0
sin (x)									

EXERCISE 6.2

PAGE NO: 6.8

1. Sketch the graphs of the following trigonometric functions:

- (i) $f(x) = \cos(x \pi/4)$
- (ii) $g(x) = \cos(x + \pi/4)$
- (iii) $h(x) = \cos^2 2x$
- (iv) ϕ (x) = 2 cos (x π /6)
- $(v) \psi(x) = \cos(3x)$
- (vi) $u(x) = \cos^2 x/2$
- (vii) $f(x) = \cos \pi x$
- (viii) $g(x) = \cos 2\pi x$

Solution:

(i) $f(x) = \cos(x - \pi/4)$

We know that $g(x) = \cos x$ is a periodic function with period 2π .

So, $f(x) = \cos(x - \pi/4)$ is a periodic function with period π . So, we will draw the graph of $f(x) = \cos(x - \pi/4)$ in the interval $[0, \pi]$. The values of $f(x) = \cos(x - \pi/4)$ at various points in $[0, \pi]$ are listed in the following table:

X	0 (A)	π/4 (B)	$\pi/2$ (C)	$3\pi/4$ (D)	π (E)	5π/4 (F)	$3\pi/2$ (G)	$7\pi/4$ (H)
f(x) =	$1/\sqrt{2}$	1	$1/\sqrt{2} =$	0	$-1/\sqrt{2} =$	-1	$-1/\sqrt{2} = -$	0
cos (x -	= 0.7		0.7		-0.7		0.7	
$\pi/4$)								

(ii)
$$g(x) = \cos(x + \pi/4)$$

We know that $f(x) = \cos x$ is a periodic function with period 2π .

So, g (x) = $\cos(x + \pi/4)$ is a periodic function with period π . So, we will draw the graph of g (x) = $\cos(x + \pi/4)$ in the interval $[0, \pi]$. The values of g (x) = $\cos(x + \pi/4)$ at various points in $[0, \pi]$ are listed in the following table:

X	0 (A)	π/4 (B)	$\pi/2$ (C)	$3\pi/4$ (D)	π (E)	$5\pi/4 (F)$	$3\pi/2$ (G)	$7\pi/4$ (H)
g(x) =	$1/\sqrt{2}$	0	$-1/\sqrt{2} =$	-1	$-1/\sqrt{2} =$	0	$1/\sqrt{2} =$	1
	= 0.7		-0.7		-0.7		0.7	
$\pi/4)$								

The required curve is:

(iii)
$$h(x) = \cos^2 2x$$

We know that $f(x) = \cos x$ is a periodic function with period 2π .

So, $h(x) = \cos^2 2x$ is a periodic function with period π . So, we will draw the graph of $h(x) = \cos^2 2x$ in the interval $[0, \pi]$. The values of $h(x) = \cos^2 2x$ at various points in $[0, \pi]$ are listed in the following table:

X	0 (A)	π/4 (B)	$\pi/2$ (C)	$3\pi/4$ (D)	π (E)	5π/4 (F)	$3\pi/2$ (G)
h(x) =	1	0	1	0	1	0	1
$\cos^2 2x$							

(iv)
$$\phi(x) = 2 \cos(x - \pi/6)$$

We know that $f(x) = \cos x$ is a periodic function with period 2π . So, $\phi(x) = 2\cos(x - \pi/6)$ is a periodic function with period π . So, we will draw the graph of $\phi(x) = 2\cos(x - \pi/6)$ in the interval $[0, \pi]$. The values of $\phi(x) = 2\cos(x - \pi/6)$ at various points in $[0, \pi]$ are listed in the following table:

X	0 (A)	$\pi/3$ (B)	$2\pi/3$	π (D)	$4\pi/3$ (E)	$5\pi/3 \; (F)$
			(C)			
$\phi(x) =$	$\sqrt{3} =$	$\sqrt{3} =$	0	$-\sqrt{3} = -$	$-\sqrt{3} = -$	0
2 cos (x		1.73		1.73	1.73	
$-\pi/6)$						

(v)
$$\psi$$
 (x) = cos (3x)

We know that $f(x) = \cos x$ is a periodic function with period 2π .

So, $\psi(x) = \cos(3x)$ is a periodic function with period $2\pi/3$. So, we will draw the graph of $\psi(x) = \cos(3x)$ in the interval $[0, 2\pi/3]$. The values of $\psi(x) = \cos(3x)$ at various points in $[0, 2\pi/3]$ are listed in the following table:

X	0 (A)	π/6 (B)	$\pi/3$ (C)	$\pi/2$ (D)	$2\pi/3$ (E)	$5\pi/6 (F)$
$\psi(x) =$	1	0	-1	0	1	0
$\cos(3x)$						

(vi)
$$u(x) = \cos^2 x/2$$

We know that $f(x) = \cos x$ is a periodic function with period 2π .

So, $u(x) = \cos^2(x/2)$ is a periodic function with period π . So, we will draw the graph of $u(x) = \cos^2(x/2)$ in the interval $[0, \pi]$. The values of $u(x) = \cos^2(x/2)$ at various points in $[0, \pi]$ are listed in the following table:

X	0 (A)	π (B)	2π (C)	3π (D)
$u(x) = \cos^2 x/2$	1	0	1	0

(vii)
$$f(x) = \cos \pi x$$

We know that $g(x) = \cos x$ is a periodic function with period 2π .

So, $f(x) = \cos(\pi x)$ is a periodic function with period 2. So, we will draw the graph of $f(x) = \cos(\pi x)$ in the interval [0, 2]. The values of $f(x) = \cos(\pi x)$ at various points in [0, 2] are listed in the following table:

X	0 (A)	1/2 (B)	1 (C)	3/2 (D)	2 (E)	5/2 (F)
$f(x) = \cos$	1	0	-1	0	1	0
πχ						

(viii)
$$g(x) = \cos 2\pi x$$

We know that $f(x) = \cos x$ is a periodic function with period 2π .

So, g (x) = $\cos(2\pi x)$ is a periodic function with period 1. So, we will draw the graph of g (x) = $\cos(2\pi x)$ in the interval [0, 1]. The values of g (x) = $\cos(2\pi x)$ at various points in [0, 1] are listed in the following table:

X	0 (A)	1/4 (B)	1/2 (C)	3/4 (D)	1 (E)	5/4 (F)	3/2	7/4	2
	55455 23617	401 3001				20160 4440	(G)	(H)	
g(x) =	1	0	-1	0	1	0	-1	0	1
$g(x) = \cos 2\pi$									
X									

2. Sketch the graphs of the following curves on the same scale and the same axes:

- (i) $y = \cos x$ and $y = \cos (x \pi/4)$
- (ii) $y = \cos 2x$ and $y = \cos (x \pi/4)$
- (iii) $y = \cos x$ and $y = \cos x/2$
- (iv) $y = \cos^2 x$ and $y = \cos x$

Solution:

(i) $y = \cos x$ and $y = \cos (x - \pi/4)$

We know that the functions $y = \cos x$ and $y = \cos (x - \pi/4)$ are periodic functions with periods π and π .

The values of these functions are tabulated below:

X	0	$\pi/4$	$\pi/2$	$3\pi/4$	π	$5\pi/4$	$3\pi/2$	$7\pi/4$
$y = \cos$	1	$1/\sqrt{2} =$	0	$-1/\sqrt{2} =$	-1	$-1/\sqrt{2} =$	0	1
X		0.7		-0.7		-0.7		
$y = \cos$	$1/\sqrt{2} =$	1	$1/\sqrt{2} =$	0	$-1/\sqrt{2} =$	-1	$-1/\sqrt{2} =$	0
(x -	0.7		0.7		-0.7		-0.7	
$\pi/4$)								

The required curve is:

(ii)
$$y = \cos 2x$$
 and $y = \cos 2(x - \pi/4)$

We know that the functions $y = \cos 2x$ and $y = \cos 2(x - \pi/4)$ are periodic functions with periods π and π .

The values of these functions are tabulated below:

X	0	$\pi/4$	$\pi/2$	$3\pi/4$	π	$5\pi/4$	$3\pi/2$	$7\pi/4$
$y = \cos$	1	0	-1	0	1	0	-1	0
X								
$y = \cos$	0	1	0	-1	0	1	0	-1
$\frac{2(x-\pi/4)}{\pi/4}$								

The required curve is:

(iii) $y = \cos x$ and $y = \cos x/2$

We know that the functions $y = \cos x$ and $y = \cos (x/2)$ are periodic functions with periods π and π .

The values of these functions are tabulated below:

x	0	$\pi/2$	π	$3\pi/2$	2π
$y = \cos x$	1	0	-1	0	1
$y = \cos x/2$	1	$1/\sqrt{2} = 0.7$	0	$-1/\sqrt{2} = -0.7$	-1

(iv)
$$y = \cos^2 x$$
 and $y = \cos x$

We know that the functions $y = \cos^2 x$ and $y = \cos x$ are periodic functions with period 2π .

The values of these functions are tabulated below:

X	0	$\pi/2$	π	$3\pi/2$	2π
$y = \cos^2 x$	1	0	1	0	1
$y = \cos x$	1	0	-1	0	1

EXERCISE 6.3

PAGE NO: 6.13

Sketch the graphs of the following functions:

1. $f(x) = 2 \csc \pi x$

Solution:

We know that $f(x) = \csc x$ is a periodic function with period 2π .

So, $f(x) = 2 \csc(\pi x)$ is a periodic function with period 2. So, we will draw the graph of $f(x) = 2 \csc(\pi x)$ in the interval [0, 2]. The values of $f(x) = 2 \csc(\pi x)$ at various points in [0, 2] are listed in the following table:

X	0 (A)	1/2 (B)	1 (C)	-1 (D)	3/2 (E)	-2 (F)	2 (G)	5/2 (H)
f(x) = 2	∞	2	∞	-∞	-2	-∞	∞	2
cosec								
(πx)								

The required curve is:

2. $f(x) = 3 \sec x$

Solution:

We know that $f(x) = \sec x$ is a periodic function with period π .

So, $f(x) = 3 \sec(x)$ is a periodic function with period π . So, we will draw the graph of f

 $(x) = 3 \sec (x)$ in the interval $[0, \pi]$. The values of $f(x) = 3 \sec (x)$ at various points in $[0, \pi]$ are listed in the following table:

X	0 (A)	$\pi/2$ (B)	-π/2 (C)	π (D)	$-3\pi/2$	$3\pi/2 (F)$	2π (G)	$5\pi/2$
		30 30			(E)			(H)
f(x) =	3	∞	-∞	-3	-∞	∞	3	∞
sec x								

The required curve is:

3. $f(x) = \cot 2x$

Solution:

We know that $f(x) = \cot x$ is a periodic function with period π .

So, $f(x) = \cot(2x)$ is a periodic function with period π . So, we will draw the graph of $f(x) = \cot(2x)$ in the interval $[0, \pi]$. The values of $f(x) = \cot(2x)$ at various points in $[0, \pi]$ are listed in the following table:

X	0 (A)	π/4 (B)	$-\pi/2$ (C)	$\pi/2$ (D)	$3\pi/4$ (E)	-π (F)
f(x) =	$\rightarrow \infty$	0	-∞	$\rightarrow \infty$	0	-∞
cot x						

4. $f(x) = 2 \sec \pi x$

Solution:

We know that $f(x) = \sec x$ is a periodic function with period π .

So, $f(x) = 2 \sec (\pi x)$ is a periodic function with period 1. So, we will draw the graph of $f(x) = 2 \sec (\pi x)$ in the interval [0, 1]. The values of $f(x) = 2 \sec (\pi x)$ at various points in [0, 1] are listed in the following table:

X	0	1/2	-1/2	1	-3/2	3/2	2
f(x) = 2	2	∞	→- ∞	-2	-∞	∞	2
$sec(\pi x)$							

5.
$$f(x) = \tan^2 x$$

Solution:

We know that $f(x) = \tan x$ is a periodic function with period π .

So, $f(x) = \tan^2(x)$ is a periodic function with period π . So, we will draw the graph of $f(x) = \tan^2(x)$ in the interval $[0, \pi]$. The values of $f(x) = \tan^2(x)$ at various points in $[0, \pi]$ are listed in the following table:

X	0 (A)	$\pi/2$ (B)	$\pi/2$ (C)	π (D)	$3\pi/2$ (E)	$3\pi/2$ (F)	2 π
f(x) =	0	∞	$\rightarrow \infty$	0	∞	$\rightarrow \infty$	0
$tan^{2}(x)$							

