

EXERCISE 2.1

PAGE NO: 2.8

(1) (i) If (a/3 + 1, b - 2/3) = (5/3, 1/3), find the values of a and b.

(ii) If (x + 1, 1) = (3y, y - 1), find the values of x and y.

Solution:

Given:

$$(a/3 + 1, b - 2/3) = (5/3, 1/3)$$

By the definition of equality of ordered pairs,

Let us solve for a and b

$$a/3 + 1 = 5/3$$
 and $b - 2/3 = 1/3$

$$a/3 = 5/3 - 1$$
 and $b = 1/3 + 2/3$

$$a/3 = (5-3)/3$$
 and $b = (1+2)/3$

$$a/3 = 2/3$$
 and $b = 3/3$

$$a = 2(3)/3$$
 and $b = 1$

$$a = 2$$
 and $b = 1$

 \therefore Values of a and b are, a = 2 and b = 1

(ii) If (x + 1, 1) = (3y, y - 1), find the values of x and y.

Given:

$$(x + 1, 1) = (3y, y - 1)$$

By the definition of equality of ordered pairs,

Let us solve for x and y

$$x + 1 = 3y$$
 and $1 = y - 1$

$$x = 3y - 1$$
 and $y = 1 + 1$

$$x = 3y - 1 \text{ and } y = 2$$

Since, y = 2 we can substitute in

$$x = 3y - 1$$

$$=3(2)-1$$

$$= 6 - 1$$

$$=5$$

 \therefore Values of x and y are, x = 5 and y = 2

2. If the ordered pairs (x, -1) and (5, y) belong to the set $\{(a, b): b = 2a - 3\}$, find the values of x and y.

Solution:

Given:

The ordered pairs (x, -1) and (5, y) belong to the set $\{(a, b): b = 2a - 3\}$

Solving for first order pair

$$(x, -1) = \{(a, b): b = 2a - 3\}$$

$$x = a \text{ and } -1 = b$$
By taking $b = 2a - 3$
If $b = -1$ then $2a = -1 + 3$

$$= 2$$

$$a = 2/2$$

$$= 1$$

So, a = 1

Since x = a, x = 1

Similarly, solving for second order pair

$$(5, y) = \{(a, b): b = 2a - 3\}$$

5 = a and y = b

By taking b = 2a - 3

If
$$a = 5$$
 then $b = 2 \times 5 - 3$
= $10 - 3$
= 7

So, b = 7

Since y = b, y = 7

 \therefore Values of x and y are, x = 1 and y = 7

3. If $a \in \{-1, 2, 3, 4, 5\}$ and $b \in \{0, 3, 6\}$, write the set of all ordered pairs (a, b) such that a + b = 5.

Solution:

Given: $a \in \{-1, 2, 3, 4, 5\}$ and $b \in \{0, 3, 6\}$,

To find: the ordered pair (a, b) such that a + b = 5

Then the ordered pair (a, b) such that a + b = 5 are as follows

 $(a, b) \in \{(-1, 6), (2, 3), (5, 0)\}$

4. If $a \in \{2, 4, 6, 9\}$ and $b \in \{4, 6, 18, 27\}$, then form the set of all ordered pairs (a, b) such that a divides b and a
b.

Solution:

Given:

 $a \in \{2, 4, 6, 9\}$ and $b \in \{4, 6, 18, 27\}$

Here,

- 2 divides 4, 6, 18 and is also less than all of them
- 4 divides 4 and is also less than none of them
- 6 divides 6, 18 and is less than 18 only
- 9 divides 18, 27 and is less than all of them
- : Ordered pairs (a, b) are (2, 4), (2, 6), (2, 18), (6, 18), (9, 18) and (9, 27)

5. If A = {1, 2} and B = {1, 3}, find A x B and B x A. Solution:

Given:

A =
$$\{1, 2\}$$
 and B = $\{1, 3\}$
A × B = $\{1, 2\}$ × $\{1, 3\}$
= $\{(1, 1), (1, 3), (2, 1), (2, 3)\}$
B × A = $\{1, 3\}$ × $\{1, 2\}$
= $\{(1, 1), (1, 2), (3, 1), (3, 2)\}$

6. Let $A = \{1, 2, 3\}$ and $B = \{3, 4\}$. Find A x B and show it graphically Solution:

Given:

A =
$$\{1, 2, 3\}$$
 and B = $\{3, 4\}$
A x B = $\{1, 2, 3\} \times \{3, 4\}$
= $\{(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)\}$

Steps to follow to represent $A \times B$ graphically,

Step 1: One horizontal and one vertical axis should be drawn

Step 2: Element of set A should be represented in horizontal axis and on vertical axis elements of set B should be represented

Step 3: Draw dotted lines perpendicular to horizontal and vertical axes through the elements of set A and B

Step 4: Point of intersection of these perpendicular represents $A \times B$

7. If $A = \{1, 2, 3\}$ and $B = \{2, 4\}$, what are A x B, B x A, A x A, B x B, and (A x B) \cap (B x A)?

Solution:

Given:

$$A = \{1, 2, 3\}$$
 and $B = \{2, 4\}$

Now let us find:
$$A \times B$$
, $B \times A$, $A \times A$, $(A \times B) \cap (B \times A)$

$$A \times B = \{1, 2, 3\} \times \{2, 4\}$$

= \{(1, 2), (1, 4), (2, 2), (2, 4), (3, 2), (3, 4)\}

$$B \times A = \{2, 4\} \times \{1, 2, 3\}$$

= \{(2, 1), (2, 2), (2, 3), (4, 1), (4, 2), (4, 3)\}

$$A \times A = \{1, 2, 3\} \times \{1, 2, 3\}$$

= \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}

$$B \times B = \{2, 4\} \times \{2, 4\}$$

= \{(2, 2), (2, 4), (4, 2), (4, 4)\}

Intersection of two sets represents common elements of both the sets So,

$$(A \times B) \cap (B \times A) = \{(2, 2)\}\$$

EXERCISE 2.2

PAGE NO: 2.12

1. Given $A = \{1, 2, 3\}$, $B = \{3, 4\}$, $C = \{4, 5, 6\}$, find $(A \times B) \cap (B \times C)$. Solution:

Given:

$$A = \{1, 2, 3\}, B = \{3, 4\} \text{ and } C = \{4, 5, 6\}$$

Let us find: $(A \times B) \cap (B \times C)$

$$(A \times B) = \{1, 2, 3\} \times \{3, 4\}$$

= \{(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)\}

$$(B \times C) = \{3, 4\} \times \{4, 5, 6\}$$

= \{(3, 4), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6)\}

$$\therefore (A \times B) \cap (B \times C) = \{(3, 4)\}$$

2. If $A = \{2, 3\}$, $B = \{4, 5\}$, $C = \{5, 6\}$ find $A \times (B \cup C)$, $(A \times B) \cup (A \times C)$. Solution:

Given: $A = \{2, 3\}, B = \{4, 5\} \text{ and } C = \{5, 6\}$

Let us find: A x (B \cup C) and (A x B) \cup (A x C)

$$(B \cup C) = \{4, 5, 6\}$$

$$A \times (B \cup C) = \{2, 3\} \times \{4, 5, 6\}$$

= \{(2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)\}

$$(A \times B) = \{2, 3\} \times \{4, 5\}$$

= \{(2, 4), (2, 5), (3, 4), (3, 5)\}

$$(A \times C) = \{2, 3\} \times \{5, 6\}$$

= $\{(2, 5), (2, 6), (3, 5), (3, 6)\}$

3. If $A = \{1, 2, 3\}$, $B = \{4\}$, $C = \{5\}$, then verify that:

(i)
$$\mathbf{A} \times (\mathbf{B} \cup \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) \cup (\mathbf{A} \times \mathbf{C})$$

(ii)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

(iii)
$$A \times (B - C) = (A \times B) - (A \times C)$$

Solution:

Given:

$$A = \{1, 2, 3\}, B = \{4\} \text{ and } C = \{5\}$$

(i)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

Let us consider LHS: $(B \cup C)$
 $(B \cup C) = \{4, 5\}$
 $A \times (B \cup C) = \{1, 2, 3\} \times \{4, 5\}$
 $= \{(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)\}$

Now, RHS

$$(A \times B) = \{1, 2, 3\} \times \{4\}$$

= \{(1, 4), (2, 4), (3, 4)\}

$$(A \times C) = \{1, 2, 3\} \times \{5\}$$

= \{(1, 5), (2, 5), (3, 5)\}

$$(A \times B) \cup (A \times C) = \{(1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5)\}$$

 $\therefore LHS = RHS$

(ii)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

Let us consider LHS: $(B \cap C)$
 $(B \cap C) = \emptyset$ (No common element)
 $A \times (B \cap C) = \{1, 2, 3\} \times \emptyset$
 $= \emptyset$

Now, RHS

$$(A \times B) = \{1, 2, 3\} \times \{4\}$$

= \{(1, 4), (2, 4), (3, 4)\}

$$(A \times C) = \{1, 2, 3\} \times \{5\}$$

= \{(1, 5), (2, 5), (3, 5)\}

$$(A \times B) \cap (A \times C) = \emptyset$$

$$\therefore LHS = RHS$$

(iii)
$$A \times (B - C) = (A \times B) - (A \times C)$$

Let us consider LHS: $(B - C)$
 $(B - C) = \emptyset$
 $A \times (B - C) = \{1, 2, 3\} \times \emptyset$
 $= \emptyset$

Now, RHS

$$(A \times B) = \{1, 2, 3\} \times \{4\}$$

= $\{(1, 4), (2, 4), (3, 4)\}$

$$(A \times C) = \{1, 2, 3\} \times \{5\}$$

= \{(1, 5), (2, 5), (3, 5)\}

$$(A \times B) - (A \times C) = \emptyset$$

 \(\therefore\) LHS = RHS

4. Let $A = \{1, 2\}$, $B = \{1, 2, 3, 4\}$, $C = \{5, 6\}$ and $D = \{5, 6, 7, 8\}$. Verify that:

(i)
$$A \times C \subset B \times D$$

(ii)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

Solution:

Given:

$$A = \{1, 2\}, B = \{1, 2, 3, 4\}, C = \{5, 6\} \text{ and } D = \{5, 6, 7, 8\}$$

(i) $A \times C \subset B \times D$

Let us consider LHS A x C

$$A \times C = \{1, 2\} \times \{5, 6\}$$

= \{(1, 5), (1, 6), (2, 5), (2, 6)\}

Now, RHS

$$B \times D = \{1, 2, 3, 4\} \times \{5, 6, 7, 8\}$$

$$= \{(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 8), (4, 5), (4, 6), (4, 7), (4, 8)\}$$

Since, all elements of $A \times C$ is in $B \times D$.

: We can say $A \times C \subset B \times D$

(ii)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

Let us consider LHS A \times (B \cap C)

$$(B \cap C) = \emptyset$$

$$A \times (B \cap C) = \{1, 2\} \times \emptyset$$
$$= \emptyset$$

Now, RHS

$$(A \times B) = \{1, 2\} \times \{1, 2, 3, 4\}$$

= \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)\}

$$(A \times C) = \{1, 2\} \times \{5, 6\}$$

= $\{(1, 5), (1, 6), (2, 5), (2, 6)\}$

Since, there is no common element between $A \times B$ and $A \times C$

$$(A \times B) \cap (A \times C) = \emptyset$$

$$\therefore A \times (B \cap C) = (A \times B) \cap (A \times C)$$

5. If $A = \{1, 2, 3\}$, $B = \{3, 4\}$ and $C = \{4, 5, 6\}$, find

(i) A x (B
$$\cap$$
 C)

(ii)
$$(A \times B) \cap (A \times C)$$

(iii)
$$A \times (B \cup C)$$

(iv)
$$(A \times B) \cup (A \times C)$$

Solution:

Given:

$$A = \{1, 2, 3\}, B = \{3, 4\} \text{ and } C = \{4, 5, 6\}$$

(i)
$$A \times (B \cap C)$$

$$(B \cap C) = \{4\}$$

$$A \times (B \cap C) = \{1, 2, 3\} \times \{4\}$$

= \{(1, 4), (2, 4), (3, 4)\}

(ii)
$$(A \times B) \cap (A \times C)$$

$$(A \times B) = \{1, 2, 3\} \times \{3, 4\}$$

= $\{(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)\}$

$$(A \times C) = \{1, 2, 3\} \times \{4, 5, 6\}$$

= $\{(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)\}$
 $(A \times B) \cap (A \times C) = \{(1, 4), (2, 4), (3, 4)\}$

(iii)
$$A \times (B \cup C)$$

$$(B \cup C) = \{3, 4, 5, 6\}$$

$$A \times (B \cup C) = \{1, 2, 3\} \times \{3, 4, 5, 6\}$$

= \{(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5),

(3, 6)

(iv)
$$(A \times B) \cup (A \times C)$$

$$(A \times B) = \{1, 2, 3\} \times \{3, 4\}$$

= \{(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)\}

$$(A \times C) = \{1, 2, 3\} \times \{4, 5, 6\}$$

= $\{(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)\}$

$$(A \times B) \cup (A \times C) = \{(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (3, 6)\}$$

6. Prove that:

(i)
$$(A \cup B) \times C = (A \times C) = (A \times C) \cup (B \times C)$$

(ii)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

Solution:

(i)
$$(A \cup B) \times C = (A \times C) = (A \times C) \cup (B \times C)$$

Let (x, y) be an arbitrary element of $(A \cup B) \times C$

 $(x, y) \in (A \cup B) C$

Since, (x, y) are elements of Cartesian product of $(A \cup B) \times C$

 $x \in (A \cup B)$ and $y \in C$

 $(x \in A \text{ or } x \in B) \text{ and } y \in C$

 $(x \in A \text{ and } y \in C) \text{ or } (x \in B \text{ and } y \in C)$

 $(x, y) \in A \times C \text{ or } (x, y) \in B \times C$

$$(x, y) \in (A \times C) \cup (B \times C) \dots (1)$$

Let (x, y) be an arbitrary element of $(A \times C) \cup (B \times C)$.

$$(x, y) \in (A \times C) \cup (B \times C)$$

$$(x, y) \in (A \times C) \text{ or } (x, y) \in (B \times C)$$

 $(x \in A \text{ and } y \in C) \text{ or } (x \in B \text{ and } y \in C)$

 $(x \in A \text{ or } x \in B) \text{ and } y \in C$

 $x \in (A \cup B)$ and $y \in C$

 $(x, y) \in (A \cup B) \times C \dots (2)$

From 1 and 2, we get: $(A \cup B) \times C = (A \times C) \cup (B \times C)$

(ii)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

Let (x, y) be an arbitrary element of $(A \cap B) \times C$.

$$(x, y) \in (A \cap B) \times C$$

Since, (x, y) are elements of Cartesian product of $(A \cap B) \times C$

 $x \in (A \cap B)$ and $y \in C$

 $(x \in A \text{ and } x \in B) \text{ and } y \in C$

 $(x \in A \text{ and } y \in C) \text{ and } (x \in B \text{ and } y \in C)$

 $(x, y) \in A \times C$ and $(x, y) \in B \times C$

$$(x, y) \in (A \times C) \cap (B \times C) \dots (1)$$

Let (x, y) be an arbitrary element of $(A \times C) \cap (B \times C)$.

$$(x, y) \in (A \times C) \cap (B \times C)$$

$$(x, y) \in (A \times C)$$
 and $(x, y) \in (B \times C)$

 $(x \in A \text{ and } y \in C) \text{ and } (x \in B \text{ and } y \in C)$ $(x \in A \text{ and } x \in B) \text{ and } y \in C$ $x \in (A \cap B) \text{ and } y \in C$ $(x, y) \in (A \cap B) \times C \dots (2)$ From 1 and 2, we get: $(A \cap B) \times C = (A \times C) \cap (B \times C)$

7. If $A \times B \subseteq C \times D$ and $A \cap B \in \emptyset$, Prove that $A \subseteq C$ and $B \subseteq D$.

Solution:

Given:

 $A \times B \subseteq C \times D$ and $A \cap B \in \emptyset$

 $A \times B \subseteq C \times D$ denotes $A \times B$ is subset of $C \times D$ that is every element $A \times B$ is in $C \times D$.

And $A \cap B \in \emptyset$ denotes A and B does not have any common element between them.

 $A \times B = \{(a, b): a \in A \text{ and } b \in B\}$

∴We can say $(a, b) \subseteq C \times D$

[Since, $A \times B \subseteq C \times D$ is given]

 $a \in C$ and $b \in D$

 $a \in A = a \in C$

 $A \subseteq C$

And

 $b \in B = b \in D$

 $B \subseteq D$

Hence proved.

EXERCISE 2.3

PAGE NO: 2.20

1. If $A = \{1, 2, 3\}$, $B = \{4, 5, 6\}$, which of the following are relations from A to B? Give reasons in support of your answer.

- (i) {(1, 6), (3, 4), (5, 2)}
- (ii) $\{(1,5), (2,6), (3,4), (3,6)\}$
- (iii) $\{(4, 2), (4, 3), (5, 1)\}$
- (iv) $A \times B$

Solution:

Given,

$$A = \{1, 2, 3\}, B = \{4, 5, 6\}$$

A relation from A to B can be defined as:

$$A \times B = \{1, 2, 3\} \times \{4, 5, 6\}$$

= \{(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)\}

(i) $\{(1, 6), (3, 4), (5, 2)\}$

No, it is not a relation from A to B. The given set is not a subset of $A \times B$ as (5, 2) is not a part of the relation from A to B.

(ii) $\{(1, 5), (2, 6), (3, 4), (3, 6)\}$

Yes, it is a relation from A to B. The given set is a subset of $A \times B$.

(iii) $\{(4, 2), (4, 3), (5, 1)\}$

No, it is not a relation from A to B. The given set is not a subset of $A \times B$.

(iv) $A \times B$

 $A \times B$ is a relation from A to B and can be defined as:

$$\{(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)\}$$

2. A relation R is defined from a set $A = \{2, 3, 4, 5\}$ to a set $B = \{3, 6, 7, 10\}$ as follows: (x, y) R x is relatively prime to y. Express R as a set of ordered pairs and determine its domain and range.

Solution:

Relatively prime numbers are also known as co-prime numbers. If there is no integer greater than one that divides both (that is, their greatest common divisor is one).

Given: $(x, y) \in R = x$ is relatively prime to y Here.

2 is co-prime to 3 and 7.

3 is co-prime to 7 and 10.

4 is co-prime to 3 and 7.

5 is co-prime to 3, 6 and 7.

$$\therefore R = \{(2,3), (2,7), (3,7), (3,10), (4,3), (4,7), (5,3), (5,6), (5,7)\}\$$

Domain of relation $R = \{2, 3, 4, 5\}$

Range of relation $R = \{3, 6, 7, 10\}$

3. Let A be the set of first five natural and let R be a relation on A defined as follows: $(x, y) R x \le y$

Express R and R-1 as sets of ordered pairs. Determine also

- (i) the domain of R-1
- (ii) The Range of R.

Solution:

A is set of first five natural numbers.

So,
$$A = \{1, 2, 3, 4, 5\}$$

Given: $(x, y) R x \le y$

1 is less than 2, 3, 4 and 5.

2 is less than 3, 4 and 5.

3 is less than 4 and 5.

4 is less than 5.

5 is not less than any number A

$$\therefore R = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 2), (2, 3), (2, 4), (2, 5), (3, 3), (3, 4), (3, 5), (4, 4), (4, 5), (5, 5)\}$$

"An inverse relation is the set of ordered pairs obtained by interchanging the first and second elements of each pair in the original relation. If the graph of a function contains a point (a, b), then the graph of the inverse relation of this function contains the point (b, a)".

$$\therefore R^{-1} = \{(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (2, 2), (3, 2), (4, 2), (5, 2), (3, 3), (4, 3), (5, 3), (4, 4), (5, 4), (5, 5)\}$$

- (i) Domain of $R^{-1} = \{1, 2, 3, 4, 5\}$
- (ii) Range of $R = \{1, 2, 3, 4, 5\}$
- 4. Find the inverse relation R⁻¹ in each of the following cases:
- (i) $R = \{(1, 2), (1, 3), (2, 3), (3, 2), (5, 6)\}$
- (ii) $R = \{(x, y) : x, y \in N; x + 2y = 8\}$
- (iii) R is a relation from $\{11, 12, 13\}$ to $\{8, 10, 12\}$ defined by y = x 3

Solution:

(i) Given:

(ii) Given,

$$R = \{(x, y): x, y \in N; x + 2y = 8\}$$

Here,
$$x + 2y = 8$$

$$x = 8 - 2y$$

As $y \in N$, Put the values of $y = 1, 2, 3, \dots$ till $x \in N$

When,
$$y = 1$$
, $x = 8 - 2(1) = 8 - 2 = 6$

When,
$$y = 2$$
, $x = 8 - 2(2) = 8 - 4 = 4$

When,
$$y = 3$$
, $x = 8 - 2(3) = 8 - 6 = 2$

When,
$$y = 4$$
, $x = 8 - 2(4) = 8 - 8 = 0$

Now, y cannot hold value 4 because x = 0 for y = 4 which is not a natural number.

$$\therefore R = \{(2, 3), (4, 2), (6, 1)\}$$

$$R^{-1} = \{(3, 2), (2, 4), (1, 6)\}$$

(iii) Given,

R is a relation from $\{11, 12, 13\}$ to $\{8, 10, 12\}$ defined by y = x - 3

Here,

$$x = \{11, 12, 13\}$$
 and $y = \{8, 10, 12\}$

$$y = x - 3$$

When,
$$x = 11$$
, $y = 11 - 3 = 8 \in (8, 10, 12)$

When,
$$x = 12$$
, $y = 12 - 3 = 9 \notin (8, 10, 12)$

When,
$$x = 13$$
, $y = 13 - 3 = 10 \in (8, 10, 12)$

$$\therefore R = \{(11, 8), (13, 10)\}$$

$$R^{-1} = \{(8, 11), (10, 13)\}$$

5. Write the following relations as the sets of ordered pairs:

- (i) A relation R from the set $\{2, 3, 4, 5, 6\}$ to the set $\{1, 2, 3\}$ defined by x = 2y.
- (ii) A relation R on the set $\{1, 2, 3, 4, 5, 6, 7\}$ defined by $(x, y) \in R \Leftrightarrow x$ is relatively prime to y.
- (iii) A relation R on the set $\{0, 1, 2, ..., 10\}$ defined by 2x + 3y = 12.
- (iv) A relation R form a set $A = \{5, 6, 7, 8\}$ to the set $B = \{10, 12, 15, 16, 18\}$ defined by (x, y) R x divides y.

Solution:

(i) A relation R from the set $\{2, 3, 4, 5, 6\}$ to the set $\{1, 2, 3\}$ defined by x = 2y.

Let
$$A = \{2, 3, 4, 5, 6\}$$
 and $B = \{1, 2, 3\}$

Given,
$$x = 2y$$
 where $y = \{1, 2, 3\}$
When, $y = 1$, $x = 2(1) = 2$
When, $y = 2$, $x = 2(2) = 4$
When, $y = 3$, $x = 2(3) = 6$
 $\therefore R = \{(2, 1), (4, 2), (6, 3)\}$

(ii) A relation R on the set $\{1, 2, 3, 4, 5, 6, 7\}$ defined by $(x, y) \in R \Leftrightarrow x$ is relatively prime to y.

Given:

(x, y) R x is relatively prime to y Here,

2 is co-prime to 3, 5 and 7.

3 is co-prime to 2, 4, 5 and 7.

4 is co-prime to 3, 5 and 7.

5 is co-prime to 2, 3, 4, 6 and 7.

6 is co-prime to 5 and 7.

7 is co-prime to 2, 3, 4, 5 and 6.

$$\therefore R = \{(2,3), (2,5), (2,7), (3,2), (3,4), (3,5), (3,7), (4,3), (4,5), (4,7), (5,2), (5,3), (5,4), (5,6), (5,7), (6,5), (6,7), (7,2), (7,3), (7,4), (7,5), (7,6), (7,7)\}$$

(iii) A relation R on the set $\{0, 1, 2, ..., 10\}$ defined by 2x + 3y = 12. Given,

$$(x, y) R 2x + 3y = 12$$

Where x and $y = \{0, 1, 2, ...\}$

Where x and $y = \{0, 1, 2, ..., 10\}$

$$2x + 3y = 12$$

$$2x = 12 - 3y$$

$$x = (12-3y)/2$$

When,
$$y = 0$$
, $x = (12-3(0))/2 = 12/2 = 6$

When,
$$y = 2$$
, $x = (12-3(2))/2 = (12-6)/2 = 6/2 = 3$

When,
$$y = 4$$
, $x = (12-3(4))/2 = (12-12)/2 = 0/2 = 0$

$$\therefore R = \{(0, 4), (3, 2), (6, 0)\}\$$

(iv) A relation R form a set $A = \{5, 6, 7, 8\}$ to the set $B = \{10, 12, 15, 16, 18\}$ defined by $(x, y) \in R \Leftrightarrow x$ divides y.

Given,

(x, y) R x divides y

Where, $x = \{5, 6, 7, 8\}$ and $y = \{10, 12, 15, 16, 18\}$

Here,

5 divides 10 and 15.

6 divides 12 and 18.

7 divides none of the value of set B.

8 divides 16.

$$\therefore$$
 R = {(5, 10), (5, 15), (6, 12), (6, 18), (8, 16)}

6. Let R be a relation in N defined by $(x, y) \in R \Leftrightarrow x + 2y = 8$. Express R and R⁻¹ as sets of ordered pairs.

Solution:

Given,

$$(x, y) R x + 2y = 8 \text{ where } x \in N \text{ and } y \in N$$

$$x + 2y = 8$$

$$x = 8 - 2y$$

Putting the values $y = 1, 2, 3, \dots$ till $x \in N$

When,
$$y = 1$$
, $x = 8 - 2(1) = 8 - 2 = 6$

When,
$$y = 2$$
, $x = 8 - 2(2) = 8 - 4 = 4$

When,
$$y = 3$$
, $x = 8 - 2(3) = 8 - 6 = 2$

When,
$$y = 4$$
, $x = 8 - 2(4) = 8 - 8 = 0$

Now, y cannot hold value 4 because x = 0 for y = 4 which is not a natural number.

$$\therefore R = \{(2, 3), (4, 2), (6, 1)\}$$

$$R^{-1} = \{(3, 2), (2, 4), (1, 6)\}$$

7. Let $A = \{3, 5\}$ and $B = \{7, 11\}$. Let $R = \{(a, b): a \in A, b \in B, a-b \text{ is odd}\}$. Show that R is an empty relation from A into B.

Solution:

Given,

$$A = \{3, 5\}$$
 and $B = \{7, 11\}$

$$R = \{(a, b): a \in A, b \in B, a-b \text{ is odd}\}\$$

On putting
$$a = 3$$
 and $b = 7$,

$$a-b=3-7=-4$$
 which is not odd

On putting
$$a = 3$$
 and $b = 11$,

$$a - b = 3 - 11 = -8$$
 which is not odd

On putting
$$a = 5$$
 and $b = 7$:

$$a - b = 5 - 7 = -2$$
 which is not odd

On putting
$$a = 5$$
 and $b = 11$:

$$a - b = 5 - 11 = -6$$
 which is not odd

$$\therefore \mathbf{R} = \{\} = \mathbf{\Phi}$$

R is an empty relation from A into B.

Hence proved.

8. Let $A = \{1, 2\}$ and $B = \{3, 4\}$. Find the total number of relations from A into B. Solution:

Given,

$$A = \{1, 2\}, B = \{3, 4\}$$

n(A) = 2 (Number of elements in set A).

n(B) = 2 (Number of elements in set B).

We know.

$$n (A \times B) = n (A) \times n (B)$$

$$= 2 \times 2$$

$$= 4$$

[since, n(x) = a, n(y) = b. total number of relations = 2^{ab}]

: Number of relations from A to B are $2^4 = 16$.

9. Determine the domain and range of the relation R defined by

- (i) $R = \{(x, x+5): x \in \{0, 1, 2, 3, 4, 5\}$
- (ii) $R = \{(x, x^3): x \text{ is a prime number less than 10}\}$ Solution:

(i)
$$R = \{(x, x+5): x \in \{0, 1, 2, 3, 4, 5\}$$

Given,

$$R = \{(x, x+5): x \in \{0, 1, 2, 3, 4, 5\}$$

$$\therefore R = \{(0, 0+5), (1, 1+5), (2, 2+5), (3, 3+5), (4, 4+5), (5, 5+5)\}\$$

$$R = \{(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10)\}$$

So,

Domain of relation $R = \{0, 1, 2, 3, 4, 5\}$

Range of relation $R = \{5, 6, 7, 8, 9, 10\}$

(ii)
$$R = \{(x, x^3): x \text{ is a prime number less than } 10\}$$
 Given,

 $R = \{(x, x^3): x \text{ is a prime number less than } 10\}$

Prime numbers less than 10 are 2, 3, 5 and 7

$$\therefore R = \{(2, 2^3), (3, 3^3), (5, 5^3), (7, 7^3)\}\$$

$$R = \{(2, 8), (3, 27), (5, 125), (7, 343)\}$$

So,

Domain of relation $R = \{2, 3, 5, 7\}$

Range of relation $R = \{8, 27, 125, 343\}$

10. Determine the domain and range of the following relations:

(i)
$$R = \{a, b\}$$
: $a \in N$, $a < 5$, $b = 4$

(ii)
$$S = \{a, b\}$$
: $b = |a-1|, a \in \mathbb{Z} \text{ and } |a| \le 3\}$

Solution:


```
(i) R = \{a, b\}: a \in N, a < 5, b = 4
Given,
R = \{a, b\}: a \in N, a < 5, b = 4\}
Natural numbers less than 5 are 1, 2, 3 and 4
a = \{1, 2, 3, 4\} and b = \{4\}
R = \{(1, 4), (2, 4), (3, 4), (4, 4)\}
So.
Domain of relation R = \{1, 2, 3, 4\}
Range of relation R = \{4\}
(ii) S = \{a, b\}: b = |a-1|, a \in Z \text{ and } |a| \le 3\}
Given,
S = \{a, b\}: b = |a-1|, a \in \mathbb{Z} \text{ and } |a| \le 3\}
Z denotes integer which can be positive as well as negative
Now, |a| \le 3 and b = |a-1|
\therefore a = {-3, -2, -1, 0, 1, 2, 3}
For, a = -3, -2, -1, 0, 1, 2, 3 we get,
S = \{(-3, |-3-1|), (-2, |-2-1|), (-1, |-1-1|), (0, |0-1|), (1, |1-1|), (2, |2-1|), (3, |3-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1, |-1-1|), (-1
1|)}
S = \{(-3, |-4|), (-2, |-3|), (-1, |-2|), (0, |-1|), (1, |0|), (2, |1|), (3, |2|)\}
S = \{(-3, 4), (-2, 3), (-1, 2), (0, 1), (1, 0), (2, 1), (3, 2)\}
b = 4, 3, 2, 1, 0, 1, 2
So,
Domain of relation S = \{0, -1, -2, -3, 1, 2, 3\}
Range of relation S = \{0, 1, 2, 3, 4\}
```

11. Let $A = \{a, b\}$. List all relations on A and find their number.

Solution:

The total number of relations that can be defined from a set A to a set B is the number of possible subsets of $A \times B$. If n(A) = p and n(B) = q, then $n(A \times B) = pq$.

So, the total number of relations is 2^{pq} .

Now.

$$A \times A = \{(a, a), (a, b), (b, a), (b, b)\}$$

Total number of relations are all possible subsets of $A \times A$:

[$\{(a, a), (a, b), (b, a), (b, b)\}$, $\{(a, a), (a, b)\}$, $\{(a, a), (b, a)\}$, $\{(a, a), (b, b)\}$, $\{(a, b), (b, b)\}$, $\{(a, b), (b, b)\}$, $\{(a, a), (a, b), (b, a)\}$, $\{(a, b), (b, a), (b, b)\}$, $\{(a, a), (a, b), (b, a), (b, b)\}$]

n $\{(a, a), (a, b), (b, b)\}$, $\{(a, a), (a, b), (b, a), (b, b)\}$]

n $\{(a, a), (a, b), (b, b)\}$, $\{(a, a), (a, b), (b, a), (b, b)\}$]

∴ Total number of relations = $2^4 = 16$

