

Exercise 10.1	Page No: 10.5
1. Fill in the blanks:	
(i) The common point of tangent and the circle is called	
(ii) A circle may have parallel tangent.	
(iii) A tangent to a circle intersects it in point.	
(iv) A line intersecting a circle in two points is called a	
(v) The angle between tangent at a point P on circle and radius through the point is	
Solution:	
(i) The common point of tangent and the circle is called <u>point of contact</u>	
(ii) A circle may have <u>two</u> parallel tangent.	
(iii) A tangent to a circle intersects it in <u>one</u> point.	
(iv) A line intersecting a circle in two points is called a <u>secant.</u>	
(v) The angle between tangent at a point P on circle and radius through the	ne point is 90°.
2. How many tangents can a circle have?	
Solution:	

A tangent is defined as a line intersecting the circle in one point. Since, there are infinite number of points on the circle, a circle can have many (infinite) tangents.

Exercise 10.2 Page No: 10.33

1. If PT is a tangent at T to a circle whose centre is O and OP = 17 cm, OT = 8 cm. Find the length of the tangent segment PT.

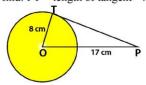
Solution:

Given,

OT = radius = 8 cm

OP = 17 cm

To find: PT = length of tangent =?



Clearly, T is point of contact. And, we know that at point of contact tangent and radius are perpendicular.

∴ OTP is right angled triangle \angle OTP = 90°, from Pythagoras theorem OT² + PT² = OP² $8^2 + PT^2 = 17^2$

$$8^2 + PT^2 = 17^2$$

$$PT\sqrt{17^2 - 8^2}$$

$$=\sqrt{289-64}$$

$$=\sqrt{225}$$

 \therefore PT = length of tangent = 15 cm.

2. Find the length of a tangent drawn to a circle with radius 5cm, from a point 13 cm from the center of the circle.

Solution:

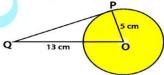
Consider a circle with centre O.

OP = radius = 5 cm. (given)

A tangent is drawn at point P, such that line through O intersects it at Q.

And, OQ = 13cm (given).

To find: Length of tangent PQ =?



We know that tangent and radius are perpendicular to each other.

 $\triangle OPQ$ is right angled triangle with $\angle OPQ = 90^{\circ}$

By Pythagoras theorem we have,

 $OQ^2 = OP^2 + PQ^2$

 $\Rightarrow 13^2 = 5^2 + PQ^2$

 $\Rightarrow PQ^2 = 169 - 25 = 144$

 \Rightarrow PQ = $\sqrt{114}$

= 12 cm

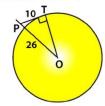
Therefore, the length of tangent = 12 cm

3. A point P is 26 cm away from O of circle and the length PT of the tangent drawn from P to the circle is 10 cm. Find the radius of the circle. **Solution:**

Given, OP = 26 cm

PT = length of tangent = 10 cm

To find: radius = OT = ?



We know that,

At point of contact, radius and tangent are perpendicular ∠OTP = 90°

So, \triangle OTP is right angled triangle.

Then by Pythagoras theorem, we have $OP^2 = OT^2 + PT^2$

 $26^2 = OT^2 + 10^2$

 $OT^2 = 676 - 100$

 $OT = \sqrt{576}$

OT = 24 cm

Thus, OT = length of tangent = 24 cm

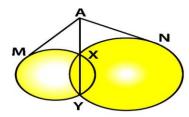
4. If from any point on the common chord of two intersecting circles, tangents be drawn to the circles, prove that they are equal.

Solution:

Let the two circles intersect at points X and Y.

So, XY is the common chord.

Suppose 'A' is a point on the common chord and AM and AN be the tangents drawn A to the circle Then it's required to prove that AM = AN.



In order to prove the above relation, following property has to be used.

"Let PT be a tangent to the circle from an external point P and a secant to the circle through P intersecting the circle at points A and B, then $PT^2 = PA \times PB$ "

Now AM is the tangent and AXY is a secant

 $\therefore AM^2 = AX \times AY \dots (i)$

Similarly, AN is a tangent and AXY is a secant

 $\therefore AN^2 = AX \times AY \dots (ii)$

From (i) & (ii), we have $AM^2 = AN^2$

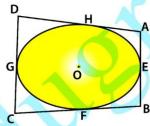
AM = AN

Therefore, tangents drawn from any point on the common chord of two intersecting circles are equal.

- Hence Proved

5. If the quadrilateral sides touch the circle, prove that sum of pair of opposite sides is equal to the sum of other pair.

Solution:



Consider a quadrilateral ABCD touching circle with centre O at points E, F, G and H as shown in figure. We know that,

The tangents drawn from same external points to the circle are equal in length.

Consider tangents:

1. From point A [AH & AE]

 $\overrightarrow{AH} = \overrightarrow{AE} \dots (i)$

2. From point B [EB & BF]

BF = EB ... (ii)

3. From point C [CF & GC]

 $FC = CG \dots (iii)$

4. From point D [DG & DH]

$$DH = DG (iv)$$

$$Adding (i), (ii), (iii), & (iv)$$

$$(AH + BF + FC + DH) = [(AC + CB) + (CG + DG)]$$

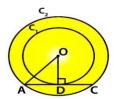
$$\Rightarrow (AH + DH) + (BF + FC) = (AE + EB) + (CG + DG)$$

$$\Rightarrow AD + BC = AB + DC [from fig.]$$

Therefore, the sum of one pair of opposite sides is equal to other.

- Hence Proved

6. Out of the two concentric circles, the radius of the outer circle is 5 cm and the chord AC of length 8 cm is a tangent to the inner circle. Find the radius of the inner circle. Solution:

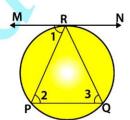


Let C₁ and C₂ be the two circles having same center O. And, AC is a chord which touches the C₁ at point D

let's join OD. So, OD \perp AC AD = DC = 4 cm [perpendicular line OD bisects the chord] Thus, in right angled \triangle AOD, OA² = AD² + DO² [By Pythagoras theorem] DO² = 5² - 4² = 25 - 16 = 9 DO = 3 cm Therefore, the radius of the inner circle OD = 3 cm.

7. A chord PQ of a circle is parallel to the tangent drawn at a point R of the circle. Prove that R bisects the arc PRQ.

Solution:



Given: Chord PQ is parallel tangent at R.

To prove: R bisects the arc PRQ.

Proof:

Since PQ | tangent at R.

 $\angle 1 = \angle 2$ [alternate interior angles]

 $\angle 1 = \angle 3$

[angle between tangent and chord is equal to angle made by chord in alternate segment]

So, $\angle 2 = \angle 3$

 \Rightarrow PR = QR [sides opposite to equal angles are equal]

Hence, clearly R bisects PQ.

8. Prove that a diameter AB of a circle bisects all those chords which are parallel to the tangent at the point A.

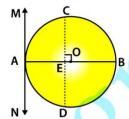
Solution:

Given,

AB is a diameter of the circle.

A tangent is drawn from point A.

Construction: Draw a chord CD parallel to the tangent MAN.



So now, CD is a chord of the circle and OA is a radius of the circle.

∠MAO = 90°

[Tangent at any point of a circle is perpendicular to the radius through the point of contact]

 $\angle CEO = \angle MAO$ [corresponding angles]

∠CEO = 90°

Therefore, OE bisects CD.

[perpendicular from center of circle to chord bisects the chord]

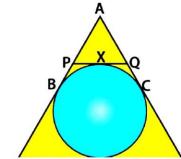
Similarly, the diameter AB bisects all the chords which are parallel to the tangent at the point A.

9. If AB, AC, PQ are the tangents in the figure, and AB = 5 cm, find the perimeter of \triangle APQ. Solution:

Given,

AB, AC, PQ are tangents

And, AB = 5 cm



Perimeter of ΔAPQ,

Perimeter =
$$AP + AQ + PQ$$

= $AP + AQ + (PX + QX)$

We know that,

The two tangents drawn from external point to the circle are equal in length from point A,

So, AB = AC = 5 cm

From point P, PX = PB [Tangents from an external point to the circle are equal.]

From point Q, QX = QC [Tangents from an external point to the circle are equal.]

Thus,

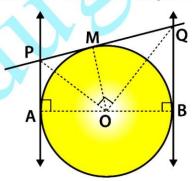
Perimeter (P) =
$$AP + AQ + (PB + QC)$$

= $(AP + PB) + (AQ + QC)$
= $AB + AC = 5 + 5$
= 10 cm.

10. Prove that the intercept of a tangent between two parallel tangents to a circle subtends a right angle at centre.

Solution:

Consider a circle with centre 'O' and has two parallel tangents through A & B at ends of diameter.

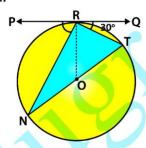


Let tangent through M intersect the parallel tangents at P and Q Then, required to prove: $\angle POQ = 90^{\circ}$.

```
From fig. it is clear that ABQP is a quadrilateral
\angle A + \angle B = 90^{\circ} + 90^{\circ} = 180^{\circ} [At point of contact tangent & radius are perpendicular]
\angle A + \angle B + \angle P + \angle Q = 360^{\circ} [Angle sum property of a quadilateral]
\angle P + \angle Q = 360^{\circ} - 180^{\circ} = 180^{\circ} \dots (i)
At P & Q
\angle APO = \angle OPQ = 1/2 \angle P \dots (ii)
\angle BQO = \angle PQO = 1/2 \angle Q \dots (iii)
Using (ii) and (iii) in (i) ⇒
2\angle OPQ + 2\angle PQO = 180^{\circ}
\angle OPQ + \angle PQO = 90^{\circ} \dots (iv)
\angle OPQ + \angle PQO + \angle POQ = 180^{\circ} [Angle sum property]
\angle POQ = 180^{\circ} [from (iv)]

\angle POQ = 180^{\circ} - 90^{\circ} = 90^{\circ}
```

11. In Fig below, PQ is tangent at point R of the circle with center O. If \angle TRQ = 30°, find \angle PRS. Solution:



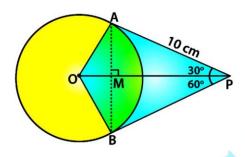
Hence, $\angle POQ = 90^{\circ}$

```
Given,
\angle TRQ = 30^{\circ}
At point R, OR \perp RQ.
So, \angle ORQ = 90^{\circ}
\Rightarrow \angle TRQ + \angle ORT = 90^{\circ}
\Rightarrow \angle ORT = 90^{\circ} - 30^{\circ} = 60^{\circ}
It's seen that, ST is diameter,
So, \angle SRT = 90^{\circ} [ : Angle in semicircle = 90^{\circ}]
Then,
\angle ORT + \angle SRO = 90^{\circ}
\angleSRO + \anglePRS = 90°
∴ \anglePRS = 90°- 30° = 60°
```


12. If PA and PB are tangents from an outside point P. such that PA = 10 cm and \angle APB = 60°. Find the length of chord AB. Solution:

Given,

 $AP = 10 \text{ cm} \text{ and } \angle APB = 60^{\circ}$ Represented in the figure



We know that,

A line drawn from centre to point from where external tangents are drawn divides or bisects the angle made by tangents at that point

So,
$$\angle APO = \angle OPB = 1/2 \times 60^{\circ} = 30^{\circ}$$

And, the chord AB will be bisected perpendicularly

$$\therefore AB = 2AM$$

In ΔAMP,

$$\sin 30^{\circ} = \frac{\text{opp. side}}{\text{hypotenuse}} = \frac{\text{AM}}{\text{AP}}$$

$$AM = AP \sin 30^{\circ}$$

$$AP/2 = 10/2 = 5cm$$
 [As $AB = 2AM$]

So,
$$AP = 2 AM = 10 cm$$

And,
$$AB = 2 AM = 10cm$$

Alternate method:

$$\overline{\text{In }\Delta\text{AMP}, \angle\text{AMP}} = 90^{\circ}, \angle\text{APM} = 30^{\circ}$$

$$\angle AMP + \angle APM + \angle MAP = 180^{\circ}$$

$$90^{\circ} + 30^{\circ} + \angle MAP = 180^{\circ}$$

$$\angle MAP = 60^{\circ}$$

In
$$\triangle PAB$$
, $\angle MAP = \angle BAP = 60^{\circ}$, $\angle APB = 60^{\circ}$

We also get, $\angle PBA = 60^{\circ}$

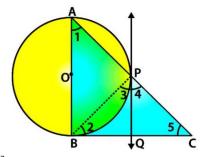
.: ΔPAB is equilateral triangle

AB = AP = 10 cm

13. In a right triangle ABC in which $\angle B = 90^\circ$, a circle is drawn with AB as diameter intersecting the hypotenuse AC at P. Prove that the tangent to the circle at P bisects BC. Solution:

Let O be the center of the given circle. Suppose, the tangent at P meets BC at Q. Then join BP.

Required to prove: BQ = QC



Proof:

 $\angle ABC = 90^{\circ}$ [tangent at any point of circle is perpendicular to radius through the point of contact] In $\triangle ABC$, $\angle 1 + \angle 5 = 90^{\circ}$ [angle sum property, $\angle ABC = 90^{\circ}$]

And, $\angle 3 = \angle 1$

[angle between tangent and the chord equals angle made by the chord in alternate segment]

So,

$$\angle 3 + \angle 5 = 90^{\circ} \dots (i)$$

Also, $\angle APB = 90^{\circ}$ [angle in semi-circle]

$$\angle 3 + \angle 4 = 90^{\circ}$$
(ii) [$\angle APB + \angle BPC = 180^{\circ}$, linear pair]

From (i) and (ii), we get

$$\angle 3 + \angle 5 = \angle 3 + \angle 4$$

 $\angle 5 = \angle 4$

 \Rightarrow PQ = QC [sides opposite to equal angles are equal]

Also, QP = QB

[tangents drawn from an internal point to a circle are equal]

 \Rightarrow QB = QC

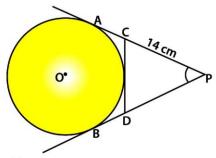
- Hence proved.

14. From an external point P, tangents PA and PB are drawn to a circle with centre O. If CD is the tangent to the circle at a point E and PA = 14 cm, find the perimeter of Δ PCD. Solution:

Given,

PA and PB are the tangents drawn from a point P outside the circle with centre O.

CD is another tangents to the circle at point E which intersects PA and PB at C and D respectively.



PA = 14 cm

PA and PB are the tangents to the circle from P

So, PA = PB = 14 cm

Now, CA and CE are the tangents from C to the circle.

 $CA = CE \dots (i)$

Similarly, DB and DE are the tangents from D to the circle.

 $DB = DE \dots (ii)$

Now, perimeter of ΔPCD

= PC + PD + CD

= PC + PD + CE + DE

= PC + CE + PD + DE

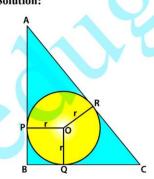
= PC + CA + PD = DB {From (i) and (ii)}

= PA + PB

= 14 + 14

= 28 cm

15. In the figure, ABC is a right triangle right-angled at B such that BC = 6 cm and AB = 8 cm. Find the radius of its incircle. Solution:



Given,

In right $\triangle ABC$, $\angle B = 90^{\circ}$

And, BC = 6 cm, AB = 8 cm

Let r be the radius of incircle whose centre is O and touches the sides AB, BC and CA at P, Q and R respectively.

Since, AP and AR are the tangents to the circle AP = AR

Similarly, CR = CQ and BQ = BP

OP and OQ are radii of the circle

OP \perp AB and OQ \perp BC and \angle B = 90° (given)

Hence, BPOQ is a square

Thus, BP = BQ = r (sides of a square are equal)

So,

AR = AP = AB - BD = 8 - r

and CR = CQ = BC - BQ = 6 - r

But $AC^2 = AB^2 + BC^2$ (By Pythagoras Theorem) = $(8)^2 + (6)^2 = 64 + 36 = 100 = (10)^2$

So, AC = 10 cm

 \Rightarrow AR + CR = 10

 $\Rightarrow 8 - r + 6 - r = 10$

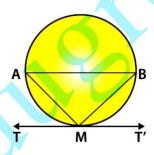
 $\Rightarrow 14 - 2r = 10$

 $\Rightarrow 2r = 14 - 10 = 4$

 $\Rightarrow r = 2$

Therefore, the radius of the incircle = 2 cm

16. Prove that the tangent drawn at the mid-point of an arc of a circle is parallel to the chord joining the end points of the arc. Solution:



Let mid-point of an arc AMB be M and TMT' be the tangent to the circle. Now, join AB, AM and MB.

Since, arc AM = arc MB

⇒ Chord AM = Chord MB

In $\triangle AMB$, AM = MB

 $\Rightarrow \angle MAB = \angle MBA \dots (i)$

[equal sides corresponding to the equal angle]

Since, TMT' is a tangent line.

 $\angle AMT = \angle MBA$

[angle in alternate segment are equal]

Thus, $\angle AMT = \angle MAB$ [from Eq. (i)]

But ∠AMT and ∠MAB are alternate angles, which is possible only when AB || TMT'

Hence, the tangent drawn at the mid-point of an arc of a circle is parallel to the chord joining the end points of the arc.

- Hence proved

17. From a point P, two tangents PA and PB are drawn to a circle with centre O. If OP = diameter of the circle, show that \triangle APB is equilateral.

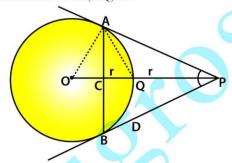
Solution:

Given: From a point P outside the circle with centre O, PA and PB are the tangents to the circle such that OP is diameter.

And, AB is joined.

Required to prove: APB is an equilateral triangle

Construction: Join OP, AQ, OA



Proof:

We know that, OP = 2r

 \Rightarrow OQ + QP = 2r

 \Rightarrow OQ = QP = r

Now in right ΔOAP,

OP is its hypotenuse and Q is its mid-point

Then, OA = AQ = OQ

(mid-point of hypotenuse of a right triangle is equidistances from its vertices)

Thus, $\triangle OAQ$ is equilateral triangle. So, $\angle AOQ = 60^{\circ}$

Now in right $\triangle OAP$,

 $\angle APO = 90^{\circ} - 60^{\circ} = 30^{\circ}$

 \Rightarrow \angle APB = 2 \angle APO = 2 x 30° = 60°

But PA = PB (Tangents from P to the circle)

 $\Rightarrow \angle PAB = \angle PBA = 60^{\circ}$

Hence $\triangle APB$ is an equilateral triangle.

18. Two tangents segments PA and PB are drawn to a circle with centre O such that $\angle APB = 120^{\circ}$. Prove that OP = 2 AP.

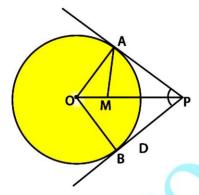
Solution:

Given: From a point P. Outside the circle with centre O, PA and PB are tangents drawn and ∠APB = 120°

And, OP is joined.

Required to prove: OP = 2 AP

Construction: Take mid-point M of OP and join AM, join also OA and OB.



Proof:

In right ΔOAP,

 $\angle OPA = 1/2 \angle APB = 1/2 (120^{\circ}) = 60^{\circ}$

 $\angle AOP = 90^{\circ} - 60^{\circ} = 30^{\circ}$ [Angle sum property]

M is mid-point of hypotenuse OP of ΔOAP [from construction]

So, MO = MA = MP

 $\angle OAM = \angle AOM = 30^{\circ} \text{ and } \angle PAM = 90^{\circ} - 30^{\circ} = 60^{\circ}$

Thus, ΔAMP is an equilateral triangle

MA = MP = AP

But, M is mid-point of OP

So.

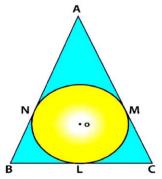
OP = 2 MP = 2 AP

- Hence proved.

19. If $\triangle ABC$ is isosceles with AB = AC and C (0, r) is the incircle of the $\triangle ABC$ touching BC at L. Prove that L bisects BC.

Solution:

Given: In $\triangle ABC$, AB = AC and a circle with centre O and radius r touches the side BC of $\triangle ABC$ at L. Required to prove : L is mid-point of BC.



Proof:

AM and AN are the tangents to the circle from A.

So, AM = AN

But AB = AC (given)

AB - AN = AC - AM

 \Rightarrow BN = CM

Now BL and BN are the tangents from B

So, BL = BN

Similarly, CL and CM are tangents

CL = CM

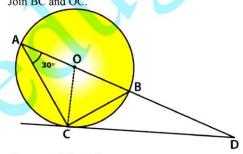
But BN = CM (proved aboved)

So, BL = CL

Therefore, L is mid-point of BC.

20. AB is a diameter and AC is a chord of a circle with centre O such that $\angle BAC = 30^{\circ}$. The tangent at C intersects AB at a point D. Prove that BC = BD. [NCERT Exemplar] Solution:

Required to prove: BC = BD Join BC and OC.



Given, $\angle BAC = 30^{\circ}$ $\Rightarrow \angle BCD = 30^{\circ}$

[angle between tangent and chord is equal to angle made by chord in the alternate segment] $\angle ACD = \angle ACO + \angle OCD$ $\angle ACD = 30^\circ + 90^\circ = 120^\circ$ [OC \bot CD and OA = OC = radius $\Rightarrow \angle OAC = \angle OCA = 30^\circ$] In $\triangle ACD$, $\angle CAD + \angle ACD + \angle ADC = 180^\circ \qquad \text{[Angle sum property of a triangle]}$ $\Rightarrow 30^\circ + 120^\circ + \angle ADC = 180^\circ$ $\Rightarrow \angle ADC = 180^\circ - (30^\circ + 120^\circ) = 30^\circ$ Now, in $\triangle ACD$, $\angle BCD = \angle BDC = 30^\circ$ $\Rightarrow BC = BD \qquad \text{[As sides opposite to equal angles are equal]}$

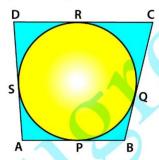
21. In the figure, a circle touches all the four sides of a quadrilateral ABCD with AB = 6 cm, BC = 7 cm, and CD = 4 cm. Find AD.

Solution:

- Hence Proved

Given,

A circle touches the sides AB, BC, CD and DA of a quadrilateral ABCD at P, Q, R and S respectively. AB = 6 cm, BC = 7 cm, CD = 4cm



Let AD = x

As AP and AS are the tangents to the circle

AP = AS

Similarly,

BP = BQ

CQ = CR

and OR = DS

So, In ABCD

AB + CD = AD + BC (Property of a cyclic quadrilateral)

 \Rightarrow 6 + 4 = 7 + \times

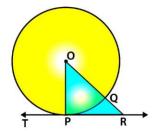
 $\Rightarrow 10 = 7 + x$

 $\Rightarrow x = 10 - 7 = 3$

Therefore, AD = 3 cm.

22. Prove that the perpendicular at the point contact to the tangent to a circle passes through the centre of the circle. Solution:

Given: TS is a tangent to the circle with centre O at P, and OP is joined. Required to prove: OP is perpendicular to TS which passes through the centre of the circle Construction: Draw a line OR which intersect the circle at Q and meets the tangent TS at R



Proof:

OP = OQ (radii of the same circle)

And OQ < OR

 \Rightarrow OP < OR

similarly, we can prove that OP is less than all lines which can be drawn from O to TS.

OP is the shortest

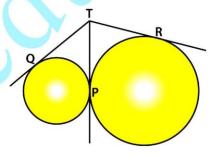
OP is perpendicular to TS

Therefore, the perpendicular through P will pass through the centre of the circle

- Hence proved.

23. Two circles touch externally at a point P. From a point T on the tangent at P, tangents TQ and TR are drawn to the circles with points of contact Q and R respectively. Prove that TQ = TR. Solution:

Given: Two circles with centres O and C touch each other externally at P. PT is its common tangent From a point T: PT, TR and TQ are the tangents drawn to the circles. Required to prove: TQ = TR



Proof:

From T, TR and TP are two tangents to the circle with centre O

So, $TR = TP \dots (i)$

Similarly, from point T

TQ and TP are two tangents to the circle with centre C

 $TQ = TP \dots (ii)$

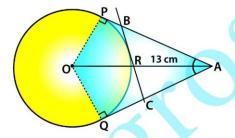
From (i) and (ii) ⇒

TQ = TR

- Hence proved.

24. A is a point at a distance 13 cm from the centre O of a circle of radius 5 cm. AP and AQ are the tangents to the circle at P and Q. If a tangent BC is drawn at a point R lying on the minor arc PQ to intersect AP at B and AQ at C, find the perimeter of the ΔABC. Solution:

Given: Two tangents are drawn from an external point A to the circle with centre O. Tangent BC is drawn at a point R and radius of circle = 5 cm. Required to find : Perimeter of ΔABC.



Proof:

We know that,

∠OPA = 90°[Tangent at any point of a circle is perpendicular to the radius through the point of contact]

 $OA^2 = OP^2 + PA^2$ [by Pythagoras Theorem]

 $(13)^2 = 5^2 + PA^2$

 $\Rightarrow PA^2 = 144 = 12^2$

 \Rightarrow PA = 12 cm

Now, perimeter of $\triangle ABC = AB + BC + CA = (AB + BR) + (RC + CA)$

= AB + BP + CQ + CA [BR = BP, RC = CQ tangents from internal point to a circle are equal]

 $= AP + AQ = 2AP = 2 \times (12) = 24 \text{ cm}$

[AP = AQ tangent from internal point to a circle are equal]

Therefore, the perimeter of $\triangle ABC = 24$ cm.