

Exercise 12.1

Page No: 197

Evaluate:

1. (i) 3^{-2} (ii) $(-4)^{-2}$ (iii) $(\frac{1}{2})^{-}$

Solution:

(i)
$$3^{-2} = \left(\frac{1}{3}\right)^2$$

$$\left[\because a^{-m} = \frac{1}{a^m} \right]$$

$$= 1/9$$

(ii)
$$(-4)^{-2} = (\frac{1}{-4})^2$$

$$\left[\because a^{-m} = \frac{1}{a^m} \right]$$
= 1/16

(iii)
$$\left(\frac{1}{2}\right)^{-5} = \left(\frac{2}{1}\right)^5$$

$$\left[\because a^{-m} = \frac{1}{a^m}\right]$$

$$=2^{5}$$

30

2. Simplify and express the result in power notation with positive exponent:

(i)
$$(-4)^5 \div (-4)^8$$

(ii)
$$\left(\frac{1}{2^3}\right)^2$$

(iii)
$$-(3)^4 \times \left(\frac{5}{3}\right)^4$$

(iv)
$$(3^{-7} \div 3^{-10}) \times 3^{-5}$$

(v)
$$2^{-3} \times (-7)^{-3}$$

(i)
$$(-4)^5 \div (-4)^8$$

$$= (-4)^5 / (-4)^8$$

$$= (-4)5 - 8$$

$$=1/(-4)^3$$

(ii)
$$\left(\frac{1}{2^3}\right)^2$$

$$= 1^2/(2^3)^2$$

$$\left[\because \left(\frac{a}{b} \right)^m = \frac{a^m}{a^n} \right]$$

$$= 1/2^{(3x2)} = 1/2^6$$

$$\left[\because \left(a^m \right)^n = a^{m \times n} \right]$$

(iii)

$$(-3)^4 \times \left(\frac{5}{3}\right)^4 = (-3)^4 \times \frac{5^4}{3^4} \quad \left[\because \quad \left(\frac{a}{b}\right)^m = \frac{a^m}{a^n} \right]$$

$$= (-1)^4 \times 3^4 \times (5^4 / 3^4)$$

$$\begin{bmatrix} \because (ab)^m = a^m b^m \end{bmatrix}$$
$$= 3^{(4-4)} \times 5^{4}$$

$$\left[: a^m \div a^n = a^{m-n} \right]$$

$$= 3^0 \times 5^4 = 5^4$$

$$\begin{bmatrix} \because a^0 = 1 \end{bmatrix}$$

iv)

$$(3^{-7} \div 3^{-10}) \times 3^{-5}$$

$$= (3^{-7}/3^{-10}) \times 3^{-5}$$

$$= 3-7 - (-10) \times 3-5$$

$$\left[\because a^m \div a^n = a^{m-n} \right]$$

$$= 3^{(-7 + 10)} \times 3^{(-5)}$$

$$= 33 \times 3-5$$

$$=3^{(3+(-5))}$$

$$\left[\because a^m \times a^n = a^{m+n} \right]$$

$$=3^{-2}$$

$$\left[\because a^{-m} = \frac{1}{a^m} \right]$$

v)
$$2 - 3 \times (-7) - 3$$

$$=(2\times -7)^{-3}$$

(Because $a^m x b^m = (ab)^m$)

$$= 1/(2\times -7)^3$$

$$\boxed{ \because a^{-m} = \frac{1}{a^m} }$$

$$= 1/(-14)^3$$

3. Find the value of :

(i)
$$(3^0 + 4^{-1}) \times 2^2$$

(ii) $(2 \cdot 1 \times 4 \cdot 1)$

1)
$$\div 2 - 2$$

(iii)
$$\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-2}$$

(iv)
$$(3-1+4-1+5-1)0$$

$$(v)\left\{\left(-\frac{2}{3}\right)^{-2}\right\}^2$$

$$(i)(3^0 + 4^{-1}) \times 2^2 = (1+1/4) \times 2^2$$

$$\left[\because a^{-m} = \frac{1}{a^m} \right]$$

$$=((4+1)/4) \times 2^2$$

$$= (5/4) \times 2^2$$

$$= (5/2^2) \times 2^2$$

$$=5 \times 2^{(2-2)}$$

$$\boxed{ : a^m \div a^n = a^{m-n} }$$

$$= 5 \times 2^{0}$$

$$= 5 \times 1 = 5$$

$$\left[\because a^{-m} = \frac{1}{a^m} \right]$$

(ii)
$$(2-1 \times 4-1) \div 2-2$$

$$= [(1/2) \times (1/4)] \div (1/4)$$

$$\left[\because a^{-m} = \frac{1}{a^m} \right]$$

$$= (1/2 \times 1/2^2) \div 1/4$$

$$= 1/2 ^3 \div 1/4$$

$$=(1/8) \times (4)$$

= 1/2

(iii)
$$\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-2}$$

$$= (2-1)-2 + (3-1)-2 + (4-1)-2$$

$$\left[\because a^{-m} = \frac{1}{a^m} \right]$$

$$= 2^{(-1 \times -2)} + 3^{(-1 \times -2)} + 4^{(-1 \times -2)}$$

$$\left[\because \left(a^{m}\right)^{n} = a^{m \times n}\right]$$
$$= 2^{2} + 3^{2} + 4^{2}$$

$$=4+9+16$$

(iv)
$$(3-1+4-1+5-1)0$$

= 1

$$\begin{bmatrix} \because a^0 = 1 \end{bmatrix}$$

(v)
$$\left\{ \left(-\frac{2}{3} \right)^{-2} \right\}^2 = \left(-\frac{2}{3} \right)^{-2 \times 2}$$

$$\left[\because \left(a^m \right)^n = a^{m \times n} \right]$$

$$=\left(-\frac{2}{3}\right)^{-4}$$

$$=\left(-\frac{3}{2}\right)^4$$

$$\left[\because a^{-m} = \frac{1}{a^m} \right]$$

4. Evaluate

(i)
$$\frac{8^{-1} \times 5^3}{2^{-4}}$$

(ii)
$$(5^{-1} \times 2^{-1}) \times 6^{-1}$$

(i)
$$\frac{8^{-1}\times5^3}{2^{-4}}$$

$$\frac{8^{-1} \times 5^{3}}{2^{-4}} = \frac{\left(2^{3}\right)^{-1} \times 5^{3}}{2^{-4}} = \frac{2^{-3} \times 5^{3}}{2^{-4}} \qquad \left[\because \left(a^{m}\right)^{n} = a^{m \times n}\right]$$

$$2^{-3-(-4)} \times 5^3 = 2^{-3+4} \times 5^3$$
 $\left[\because a^m \div a^n = a^{m-n} \right]$

$$= 2 \times 125 = 250$$

(ii)
$$(5-1 \times 2-1) \times 6-1$$

$$(5^{-1} \times 2^{-1}) \times 6^{-1} = \left(\frac{1}{5} \times \frac{1}{2}\right) \times \frac{1}{6} \quad \left[\because \quad a^{-m} = \frac{1}{a^m}\right]$$

= $(1/10) \times 1/6$

$$= 1/60$$

5. Find the value of m for which $5^m \div 5^{-3} = 5^5$

Solution:

$$5^m \div 5^{-3} = 5^5$$

$$5(m - (-3)) = 55$$

$$\left[\because a^m \div a^n = a^{m-n} \right]$$

$$5_{m+3} = 5_5$$

Comparing exponents both sides, we get

$$m + 3 = 5$$

$$m = 5 - 3$$

m = 2

6. Evaluate

(i)

$$\left\{ \! \left(\frac{1}{3} \right)^{\!\!\!\!-1} \! - \! \left(\frac{1}{4} \right)^{\!\!\!\!-1} \! \right\}^{\!\!\!\!-1}$$

(ii)

$$\left(\frac{5}{8}\right)^{-7} \times \left(\frac{8}{5}\right)^{-4}$$

Solution:

(i)

$$\left\{ \left(\frac{1}{3}\right)^{-1} - \left(\frac{1}{4}\right)^{-1} \right\} = \left\{ \left(\frac{3}{1}\right)^{1} - \left(\frac{4}{1}\right)^{1} \right\} \quad \left[\because \quad a^{-m} = \frac{1}{a^{m}} \right]$$

= 3 - 4

(ii)

$$\left(\frac{5}{8}\right)^{-7} \times \left(\frac{8}{5}\right)^{-4} = \frac{5^{-7}}{8^{-7}} \times \frac{8^{-4}}{5^{-4}} \left[\cdots \left(\frac{a}{b}\right)^m = \frac{a^m}{b^m} \right] = 5^{-7 - (-4)} \times 8^{-4 - (-7)} \left[\cdots a^m \div a^n = a^{m-n} \right] = 5^{-7 + 4} \times 8^{-4 + 7}$$

$$= 5^{-3} \times 8^{3} \qquad \frac{8^{3}}{5^{3}} \quad \left[\because \quad a^{-m} = \frac{1}{a^{m}} \right] =$$

$$= 512/125$$

7. Simplify.

(i)

$$\frac{25 \times t^{-4}}{5^{-3} \times 10 \times t^{-8}} \quad (t \neq 0)$$

(ii`

$$\frac{3^{-5} \times 10^{-5} \times 125}{5^{-7} \times 6^{-5}}$$

Solution 7:

(i)

$$\frac{25\times t^{-4}}{5^{-3}\times 10\times t^{-8}}$$

$$= \frac{5^2 \times t^{-4}}{5^{-3} \times 5 \times 2 \times t^{-8}}$$
$$= \frac{5^{2-(-3)-1} \times t^{-4-(-8)}}{2}$$

$$\left[\because a^m \div a^n = a^{m-n} \right]$$

$$= \frac{5^{2+3-1} \times t^{-4+8}}{2} = \frac{5^4 \times t^4}{2} \qquad \frac{625}{2} t^4 =$$

(ii)
$$3^{-5} \times 10^{-5} \times$$

$$\frac{3^{-5} \times 10^{-5} \times 125}{5^{-7} \times 6^{-5}}$$

$$=\frac{3^{-5}\times(2\times5)^{-5}\times5^{3}}{5^{-7}\times(2\times3)^{-5}}$$

$$=\frac{3^{-5}\times 2^{-5}\times 5^{-5}\times 5^{3}}{5^{-7}\times 2^{-5}\times 3^{-5}}$$

$$\left[\because (ab)^m = a^m b^m \right]$$

$$=\frac{3^{-5}\times 2^{-5}\times 5^{-5+3}}{5^{-7}\times 2^{-5}\times 3^{-5}}=\frac{3^{-5}\times 2^{-5}\times 5^{-2}}{5^{-7}\times 2^{-5}\times 3^{-5}}$$

$$\left[: a^m \times a^n = a^{m+n} \right]$$

$$= 3^{-5-(-5)} \times 2^{-5-(-5)} \times 5^{-2-(-7)} \quad \left[\because \quad a^m \div a^n = a^{m-n} \right]$$

$$=3^{-5+5}\times2^{-5+5}\times5^{-2+7}$$
 $3^{0}\times2^{0}\times5^{5}=$

Exercise 12.2 Page No: 200

- 1. Express the following numbers in standard form.
- (i) 0.0000000000085
- (ii) 0.00000000000942
- (iii) 60200000000000000
- (iv) 0.00000000837
- (v) 31860000000

Solution:

- (i) $0.0000000000085 = 0.0000000000085 \times 10^{12} / 10^{12} = 8.5 \times 10^{-12}$
- (ii) $0.00000000000942 = 0.00000000000942 \times 10^{12} / 10^{12} = 9.42 \times 10^{-12}$
- (iii) $60200000000000000 = 6020000000000000 \times 10^{15} / 10^{15} =$

$$6.02 \times 10^{15}$$
 (iv) $0.000000000837 = 0.000000000837 \times 10^{-9} = 8.37 \times 10^{-9}$

- (v) $31860000000 = 318600000000 \times 10^{10} / 10^{10} = 3.186 \times 10^{10}$
- 2. Express the following numbers in usual form.
 - (i) 3.02×10^{-6}
 - (ii) 4.5×10^4
 - (iii) 3×10^{-8}
 - (iv) 1.0001×10^9
 - (v) 5.8×10^{12}
 - (vi) 3.61492×10^6

- (i) $3.02 \times 10^{-6} = 3.02/10^{6} = 0.00000302$
- (ii) $4.5 \times 10^4 = 4.5 \times 10000 = 45000$
- (iii) $3 \times 10^{-8} = 3/10^{8} = 0.000000003$

- (iv) $1.0001 \times 10^9 = 1000100000$
- (vi) 6. $3.61492 \times 10^6 = 3.61492 \times 1000000 = 3614920$
- 3. Express the number appearing in the following statements in standard form. (i) 1 micron is equal to 1/1000000 m.
- (ii) Charge of an electron is 0.000, 000, 000, 000, 000, 000, 16 coulomb.
- (iii) Size of bacteria is 0.0000005 m
- (iv) Size of a plant cell is 0.00001275 m
- (v) Thickness of a thick paper is 0.07 mm

Solution:

(i) 1 micron = 1/1000000

$$= 1/10^{6}$$

$$= 1 \times 10^{-6}$$

- (ii) Charge of an electron is 0.0000000000000000016 coulombs.

$$=1.6\times10^{-19}$$
 coulomb

(iii) Size of bacteria = 0.0000005

$$= 5/100000000 = 5/10^7 = 5 \times 10^-7 \text{ m}$$

(iii) Size of a plant cell is 0.00001275 m

$$= 0.00001275 \times 10^5 / 10^5$$

$$= 1.275 \times 10^{-5} m$$

(v) Thickness of a thick paper = 0.07 mm

$$0.07 \text{ mm} = 7/100 \text{ mm} = 7/10^2 = 7 \text{ x } 10^{-2} \text{ mm}$$

4. In a stack there are 5 books each of thickness 20 mm and 5 paper sheets each of thickness 0.016 mm. What is the total thickness of the stack?

Solution:

Thickness of one book = 20 mm

Thickness of 5 books = $20 \times 5 = 100 \text{ mm}$

Thickness of one paper = 0.016 mm

Thickness of 5 papers = $0.016 \times 5 = 0.08 \text{ mm}$

Total thickness of a stack = 100 + 0.08 = 100.08 mm

$$= 100.08 \times 10^{2} / 10^{2} \text{ mm}$$

$$=1.0008\times10^{2}$$
 mm